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Abstract

This document is composed of three main chapters. In the first chapter, we study

the mixture of experts, a powerful machine learning model in which each expert

handles a different region of the covariate space. However, it is crucial to choose an

appropriate number of experts to avoid overfitting or underfitting. A group fused

lasso (GFL) term is added to the model with the goal of making the coefficients of

the experts and the gating network closer together. An algorithm to optimize the

problem is also developed using block-wise coordinate descent in the dual counterpart.

Numerical results on simulated and real world datasets show that the penalized model

outperforms the unpenalized one and performs on par with many well-known models.

The second chapter studies GFL on its own and methods to solve it efficiently.

In GFL, the response and the coefficient of each observation are not scalars but

vectors. Thus, many fast solvers of the fused lasso cannot be applied to the GFL.

Two algorithms are proposed to solve the GFL, namely Alternating Minimization

and Dual Path. Results from speed trial show that our algorithms are competitive

compared to other existing methods.

The third chapter proposes a better alternative to the Box-Cox transformation, a

popular method to transform the response variable to have an approximately normal

distribution in many cases. The Box-Cox transformation is widely applied in regres-

sion, ANOVA and machine learning for both complete and censored data. However,

since it is parametric, it can be too restrictive in many cases. Our proposed method is

nonparametric, more flexible and can be fitted efficiently by our novel EM algorithms

which accommodate both complete and right-censored data.

iv



www.manaraa.com

Table of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

Chapter 2 Model selection for mixture of experts using group
fused lasso . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Mixture of Experts and the Group Fused Lasso term . . . . . . . . . 4

2.3 Reformulating the likelihood . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Penalized Mixture of Experts . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Chapter 3 Alternating Minimization and Dual Path algorithms
for Group Fused Lasso . . . . . . . . . . . . . . . . . . . 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Properties of GFL’s solution path . . . . . . . . . . . . . . . . . . . . 22

v



www.manaraa.com

3.3 Alternating Minimization algorithm . . . . . . . . . . . . . . . . . . . 26

3.4 Dual Path algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Chapter 4 Semiparametric Transformation Models for Com-
plete and Survival data . . . . . . . . . . . . . . . . . . 36

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Properties of the semiparametric probit model . . . . . . . . . . . . . 39

4.3 The proposed estimation approach for complete data . . . . . . . . . 41

4.4 The proposed approach for right-censored data . . . . . . . . . . . . . 43

4.5 Model diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Real-data applications . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.8 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Appendix A Quantities involved in the variance estimate of θ̂ . . 69

vi



www.manaraa.com

List of Tables

Table 2.1 Models to compare with penalized ME, their tuning parameters
and R packages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Table 2.2 Test MSE for different models in the original unit. . . . . . . . . . 16

Table 3.1 Timings (sec) for different optimization methods on different
simulation settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Table 3.2 Timings (sec) for different optimization methods on 2 real-world
datasets. (*GLARS only provides the approximated solution.) . . 33

Table 4.1 Simulation results from the proposed methods based on 500 sim-
ulated data sets with sample size 200 when the true transforma-
tion function is α(t) = log(t). CR stands for censored rate. Bias
is the difference between the average of 500 point estimators and
the true value. SSD is the standard deviation of the 500 point
estimators. ASE is the average of the standard errors of each
point estimator. CP95, the coverage probability, is calculated as
the proportion of the 95% confidence intervals that covers the
true value of the coefficient. . . . . . . . . . . . . . . . . . . . . . . 51

Table 4.2 Simulation results from the proposed methods based on 500 sim-
ulated data sets with sample size 200 when the true transforma-
tion function is α(t) = (t0.1 − 1)/0.1. CR stands for censored
rate. Bias is the difference between the average of 500 point es-
timators and the true value. SSD is the standard deviation of
the 500 point estimators. ASE is the average of the standard
errors of each point estimator. CP95, the coverage probability,
is calculated as the proportion of the 95% confidence intervals
that covers the true value of the coefficient. . . . . . . . . . . . . . 52

vii



www.manaraa.com

Table 4.3 Simulation results from the proposed methods based on 500 sim-
ulated data sets with sample size 200 when the true transforma-
tion function is α(t) = t3 + t. CR stands for censored rate. Bias
is the difference between the average of 500 point estimators and
the true value. SSD is the standard deviation of the 500 point
estimators. ASE is the average of the standard errors of each
point estimator. CP95, the coverage probability, is calculated as
the proportion of the 95% confidence intervals that covers the
true value of the coefficient. . . . . . . . . . . . . . . . . . . . . . . 52

Table 4.4 Mean Squared Errors of β̂1, β̂2, F̂0 for our proposed methods with
α(t) = log(t) and α(t) = t3 + t. Here MSE(F̂0) is the average of
the local mean squared errors of F̂ (t) over the a set of grid points. 53

Table 4.5 Simulation results from the Box-Cox transformation method based
on 500 simulated data sets with sample size 200 for three true
transformation function α with no censoring. Bias is the differ-
ence between the average of 500 point estimators and the true
value. SSD is the standard deviation of the 500 point estima-
tors. ASE is the average of the standard errors of each point
estimator. CP95, the coverage probability, is calculated as the
proportion of the 95% confidence intervals that covers the true
value of the coefficient. . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 4.6 Mean Squared Errors of β̂1, β̂2, F̂0 for Box-Cox transformation
method with 3 different α(t) with no censoring. . . . . . . . . . . . 54

Table 4.7 The calculated Kaike Information Criterion (AIC) values from
the probit models with different numbers of interior knots for
the Boston Housing data analysis. . . . . . . . . . . . . . . . . . . 56

Table 4.8 Coefficient estimates from the probit model and Box-Cox trans-
formation model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Table 4.9 The calculated Kaike Information Criterion (AIC) values from
the probit models with different numbers of interior knots for
the prostate cancer data analysis. . . . . . . . . . . . . . . . . . . 60

Table 4.10 Estimated covariate effects from the probit model and Cox model. 61

viii



www.manaraa.com

List of Figures

Figure 2.1 Penalized ME curves at different values of the penalty param-
eter λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Figure 3.1 Example of a simulated dataset with N = 100 and m = 3.
Points with the same color belong to the same profile. . . . . . . . 32

Figure 3.2 The aCGH data for the first 3 individuals . . . . . . . . . . . . . 34

Figure 3.3 Log returns for DJIAindex from 04/1990 to 01/2012 of 3 companies 35

Figure 4.2 Quantile-Quantile plots of the residuals from the proposed pro-
bit model (left) and the Box-Cox transformation model (right)
for Boston Housing data analysis. . . . . . . . . . . . . . . . . . . 58

Figure 4.1 Residual plots from the proposed probit model (left) and the
Box-Cox transformation model (right) for Boston Housing data
analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 4.3 The true survival curve (red solid), the estimated Kaplan-Meier
curve, and its 95% pointwise confidence band based on the
residuals of the proposed probit model for the analysis of prostate
cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ix



www.manaraa.com

Chapter 1

Introduction

This dissertation consists of three projects. The first two projects discuss about

the efficient calculations of the group fused lasso problem and how it can be applied

in the Mixture of Experts. The last project talks about a nonparametric alternative

for Box-Cox transformation which can be applied to both full data and and right-

censored data.

1



www.manaraa.com

Chapter 2

Model selection for mixture of experts using

group fused lasso

2.1 Introduction

The decision tree has been one of the most popular and widely used predictive

models not only in statistics but also in almost all other scientific fields. The reasons

for its success are its robustness and easy interpretability. Decision trees can be fitted

to almost every kind of data (Loh, 2014) and their clear structure allows everyone to

interpret the model easily. However, decision trees have the huge drawback that they

are greedy algorithms, meaning each split is made to optimize a splitting criterion,

without consideration of latter nodes. Trees also use the hard-split rule, which is non-

smooth and cannot be trained using maximum likelihood (Breiman, 2017). There

have been a few modifications to the original tree to make it non-greedy (Bennett,

1994; Norouzi et al., 2015; Grubinger et al., 2011). Nonetheless, these models are

relatively time-consuming to train and difficult to understand since they do not use

the user-friendly likelihood function.

Jordan and Jacobs (Jordan and Jacobs, 1994) and Jacobs et al. (Jacobs et

al., 1991) introduced a tree-structured architecture called Mixture of Experts (ME)

which shares the same clear representation with decision trees. ME uses the same

divide-and-conquer strategy like the decision tree and multivariate adaptive regression

splines (Friedman, 1991), but after we divide the input space into many subspaces,

we fit a linear regression (the authors call it an expert) to each subspace. The beauty

2
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of ME is that the splits between subspaces are soft, implying that observations get

assigned to all nodes or subspaces, with some probabilities which sum to 1, instead of

to just one node or subspace as with decision trees. This smoothness allows the model

to be estimated easily using maximum likelihood. However, ME can underfit or over-

fit if we choose two few or too many experts. If we choose too few linear experts, we

may not have enough experts to cover complicated covariate regions. On the other

hand, if there are too many experts in the model, some experts may start to specialize

in noise regions, limiting generalization. Until now, the literature for model selection

for ME consists mainly of three parts: growing the structure (Saito and Nakano,

1996; Fritsch et al., 1997); pruning the structure (Waterhouse and Robinson, 1995;

Jacobs et al., 1997); and using Bayesian techniques (Rasmussen and Ghahramani,

2002; Ueda and Ghahramani, 2000; Kanaujia and Metaxas, 2006). The first method

builds the structure slowly by adding one level or expert at a time. On the other

hand, the second method begins with a large model and then tries to reduce the

model complexity. The goal is to keep only the most-used branches and remove the

least-used ones. The stopping time for both of the above methods is typically chosen

by cross validation. Lastly, Bayesian techniques impose sparsity-promoting priors on

the parameters so that the model has a smaller number of non-zero weights.

In this chapter we propose another method for pruning the structure of ME.

Specifically, we want to use the group fused lasso (Bleakley and Vert, 2011) to ac-

complish this task. Initializing from a large structured ME, we use a fusion penalty to

penalize the difference between coefficients of different components of the gating net-

work and experts so that we will have some identical experts with identical weights as

well. We then can merge these similar experts and their weights together to simplify

the structure.

The chapter is organized as follows: In Section 2 we will give a review about

Mixture of Experts and the penalty term that we propose. Details about how to fit

3
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the new penalized model are included in Section 3. Numerical results on simulation

and real-world datasets will be presented in Section 4.

2.2 Mixture of Experts and the Group Fused Lasso term

We first introduce and give some background on the Mixture of Experts (ME)

model. Then we introduce our fused lasso penalty.

2.2.1 Mixture of Experts

In the ME model, a fixed number of experts and a gating network, which assigns

weights to the experts, work together to solve a nonlinear supervised learning problem.

In this chapter we will consider only the Normal regression case, but generalization to

cases of classification and Poisson regression is straightforward. The gating network’s

job is to divide the covariate space into many small subspaces by making soft splits of

the whole space. On the other hand, the job of each expert is to specialize in one of

the subspaces and learn the pattern in that particular subspace. Due to soft-splitting,

the model has a smooth transition from one subspace to another and the predictions

in those transitioning regions are stable.

Let {Y,X} be our sample, where Y is a vector of length N and X is a covariate

matrix of dimension N × P (including the intercept column). For now we assume

we work with low-dimensional data N > P . Modification for high-dimensional data

N < P will be discussed in Section 3.3.

If there are K experts in the ME model, we denote by βk (k = 1, ...K) the

coefficient vector for the kth expert and by γk (k = 1, ...K) the set of coefficients

governing how the gating network assigns weights to the K experts. We also define

β = (βT1 , βT2 , . . . , βTK)T , γ = (γT1 , γT2 , . . . , γTK)T , and θ = (βT , γT )T .

For a data point (X(n), Y (n)), let P (Y (n)|k,X(n), βk) be the conditional pdf of Y (n)

given X(n) according to the kth expert and let P (k|X(n), γ) be the weight assigned to

4
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the expert k, for k = 1, . . . , K. Then the conditional pdf of Y (n) given X(n), according

to the ME model is given by

P (Y (n)|X(n), θ) =
K∑
k=1

P (k|X(n), γ)P (Y (n)|k,X(n), βk).

As in the original ME paper by (Jacobs et al., 1991), we define the weights of the

gating network using the softmax function such that

P (k|X(n), γ) = exp(γTkX(n))∑K
l=1 exp(γTl X(n))

, k = 1, . . . , K and n = 1, . . . , N.

We note that for the purpose of identifiability, we force γK , the coefficients of the

last gating network’s component, to be 0, just as in the case of multinomial logistic

regression.

This choice of weight function for the gating network guarantees a positive weight

for each expert across the entire covariate space (so there is soft-splitting between

experts, unlike in regression trees), and the weights assigned to the experts at any

point in the covariate space sum to 1. Since we consider the Normal regression case,

the conditional pdf P (Y (n)|k,X(n), βk) is the pdf of a Normal distribution with mean

X(n)Tβk.

Under this setting, we can write down the likelihood function as

L(θ, σ2) =
N∏
n=1

K∑
k=1

eγ
T
k X

(n)∑K
l=1 e

γT
l
X(n) .

1√
2πσ

exp
(
− (Y (n) − βTkX(n))2

2σ2

)

and the log-likelihood as

`(θ, σ2) =
N∑
n=1

ln
K∑
k=1

eγ
T
k X

(n)∑K
l=1 e

γT
l
X(n) .

1√
2πσ

exp
(
− (Y (n) − βTkX(n))2

2σ2

)
.

The values of θ and σ2 which maximize the log-likelihood function cannot be found

analytically, so an EM algorithm is typically used to fit the ME model (Dempster

et al., 1977). For n = 1, . . . , N , let Z(n)
1 , . . . , Z

(n)
K ∈ {0, 1} such that ∑K

k=1 Z
(n)
k = 1 so

that only one of the Z(n)
1 , . . . , Z

(n)
K is equal to 1 while the rest are equal to 0. These

5
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indicator variables are labels that indicate which expert in the model generated the

data point.

After dropping constants, we may write the full log-likelihood as

`f (θ, σ2) =
N∑
n=1

K∑
k=1

z
(n)
k ln

[
eγ

T
k X

(n)∑K
l=1 e

γT
l
X(n) .

1
σ

exp
(
− (Y (n) − βTkX(n))2

2σ2

)]
. (2.1)

Next, following (Jordan and Jacobs, 1994), as the E-step, we take the conditional

expectation given Y and X of the full log-likelihood (2.1), which gives

Q(θ, σ2) =
N∑
n=1

K∑
k=1

h
(n)
k ln

[
eγ

T
k X

(n)∑K
l=1 e

γT
l
X(n) .

1
σ

exp
(
− (Y (n) − βTkX(n))2

2σ2

)]
, (2.2)

where

h
(n)
k =

exp(γTkX(n)) exp
(
− (Y (n) − βTkX(n))2/2σ2

)
∑K
l=1 exp(γTl X(n)) exp

(
− (Y (n) − βTl X(n))2/2σ2

) .
To perform the M-step we maximize Q(θ, σ2) with respect to (θ, σ2). We observe

that (2.2) can be decomposed as

Q(θ, σ2) =
N∑
n=1

K∑
k=1

h
(n)
k ln

[
eγ

T
k X

(n)∑K
l=1 e

γT
l
X(n)

]
−N ln(σ)−

N∑
n=1

K∑
k=1

h
(n)
k (Y (n) − βTkX(n))2

2σ2 ,

(2.3)

where the first term involves only gating network parameters and the remaining two

terms involve only expert parameters. We call the first term the gating network part

and the remaining two terms the experts part. In the unpenalized version of ME,

we can maximize each part separately using an iteratively reweighted least-squares

algorithm.

2.2.2 The group fused lasso penalty term

First we define two norms that will be used later. Given an arbitrary vector

b = (bT1 , ..., bTm)T where each block bi, i = 1, 2, ...m, has length 2P , let

6
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||b||2,1 =
m∑
j=1
||bj||2 and ||b||2,∞ = max

1≤j≤m
||bj||2.

Even though ME is an extremely powerful and flexible model, it can potentially

underfit or overfit if there are too few or too many experts in the model. We aim to

alleviate this drawback by first initializing the model with a large number of experts

and then adding to (2.3) the penalty term

Ωλ(θ) = λ
∑

1≤i<j≤K

∣∣∣∣∣
∣∣∣∣∣
βi
γi

−
βj
γj


∣∣∣∣∣
∣∣∣∣∣
2
, (2.4)

where λ is a non-negative tuning parameter that controls the regularization level. By

initializing the model with a large enough number of experts (the number of experts

is a subjective choice; based on our experiments, 6 to 10 experts seemed reasonable

for the datasets we considered in Section 5), we can ensure that, for some value of λ,

the penalty will admit a model complex enough to fit the data. Next, we increase λ

incrementally from 0. As λ gets larger, this penalty term will shrink the coefficients

of different experts together as well as the coefficients governing the weights assigned

to them by the gating network. When λ is large enough, pairs of experts and the

corresponding pairs of functions in the gating network assigning weights to them will

become identical, preventing overfitting and providing a natural way to choose the

appropriate number of experts at the same time. Essentially we are fusing groups of

coefficients together.

7
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We find it useful to rewrite the penalty term in the following way. Define the

matrix D = D′Cp, where D′ is the 2P (2K − 1)× 2P (K − 1) matrix given by

D′ =



1 −1 0 . . . 0 0

1 0 −1 . . . 0 0
... ... ... . . . ... ...

1 0 0 . . . 0 −1

0 1 −1 . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . 1 −1



⊗ I2P

and Cp is the matrix such that

Cpθ = (βT1 , γT1 , βT2 , γT2 , ..., βTK ,˜
0T )T .

Then we may rewrite the penalty in (2.4) as

Ωλ(θ) = ||Dθ||2,1,

which strongly resembles the penalty term used in the generalized lasso (Tibshirani,

2011). In the next section we will express the log-likelihood in a way that facilitates

computation of the penalized maximization step.

2.3 Reformulating the likelihood

Since the M step in (2.3) can be divided into 2 parts, the experts part and the

gating network part, in this section we will deal with each part separately.

2.3.1 The experts part

We now consider the last term in (2.3) since it is the only term in (2.3) that

involves β. We will delay the treatment of σ until later since it is relatively easy to

8
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find the update for σ and it does not appear in the penalty term. We may express

the last term in (2.3) (without the negative sign) as

QE(β, σ2) = 1
2σ2

N∑
n=1

K∑
k=1

h
(n)
k (Y (n) − βTkX(n))2 =

K∑
k=1
||W

1
2
k (Y −Xβk)||2,

where Wk = (2σ2)−1diag(h(1)
k , . . . , h

(N)
k ) for k = 1, . . . , K. Letting

Y ∗ =


W

1
2

1 Y

...

W
1
2
KY

 and X∗ =


W

1
2

1 X

. . .

W
1
2
KX

 ,

we may write

QE(β, σ2) = ‖Y ∗ −X∗β‖2.

So in the case of no regularization, the EM algorithm update for the expert pa-

rameters is

βnew = arg min
β
||Y ∗ −X∗β||2. (2.5)

2.3.2 The gating network part

The first term in (2.3), the gating network part, is slightly more complicated, since

we cannot express the update as the solution to a least-squares problem. We have

Qg(γ) =
N∑
n=1

K∑
k=1

h
(n)
k ln

[
eγ

T
k X

(n)

1 +∑K−1
l=1 eγ

T
l
X(n)

]
.

Maximizing the above term is quite similar to maximizing the likelihood for multi-

nomial logistic regression and Cox regression, so we consider a Newton-Raphson al-

gorithm. The first and second derivatives of Qg are

∂Qg

∂γij
=

N∑
n=1

x
(n)
j

[
h

(n)
i − pi(x(n); γ)

]
∂2Qg

∂γij∂γmp
= −

N∑
n=1

x
(n)
j x(n)

p pi(x(n); γ)
[
I(i = m) + pm(x(n); γ)

]
,

9
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for 1 ≤ i, j,m, p ≤ K − 1, where pi(x(n); γ) = eγ
T
k X

(n)
/[1 + ∑K−1

l=1 eγ
T
l X

(n) ]. We can

express the first and second derivatives in matrix form as

∂Qg

∂γ
= X̃T (h− p) and ∂2Qg

∂γ∂γT
= −X̃TWX̃,

where X̃ = IK−1 ⊗X and h = (hT1 , . . . , hTK−1) and p = (pT1 , . . . , pTK−1), with

pk =
(
pk(x(1); γ), . . . pk(x(N); γ))T

hk =
(
h

(1)
k , . . . , h

(N)
k )T ,

for k = 1 . . . , K − 1, and W =
(
Wij

)
1≤i,j≤K−1

, where Wij is an N × N diagonal

matrix with diagonal elements given by
pi ∗ (1N − pi) if i = j

−pi ∗ pj if i 6= j,

where we denote by 1N a vector of length N with all entries equal to 1 and by ∗ the

element-wise multiplication between two vectors.

It is well-known that we may run into numerical issues when fitting multinomial

logistic regression models using Newton-Raphson (Allison, 2008). It is indeed the case

in ME since the matrixW almost always becomes computationally singular after some

iterations. This is a problem because we need to invert W to compute the update.

Böhning (Böhning, 1992) suggests to fix the Hessian (−X̃TWX̃), or choose a fixed

matrix, say W , with which to replace W across all Newton-Raphson iterations. More

specifically, we need to choose a fixed matrix W so that (−X̃TWX̃)− (−X̃TWX̃) is

positive semi-definite. The choice of W prescribed by Böhning has entries given by

W ij =



(
1
2 −

1
2K

)
IN if i = j(

− 1
2K

)
IN if i 6= j

for 1 ≤ i, j,≤ K − 1.

With this choice of W , each Newton-Raphson update is (when there is no regu-

larization)

γnew = γold−
(
∂2Qg

∂γ∂γT

)−1
∂Qg

∂γ
= γold+

(
X̃TWX̃

)−1
X̃T (h−p) =

(
X̃TWX̃

)−1
X̃TWt,

10



www.manaraa.com

where t = X̃γold +W
−1(h− p). Using the Cholesky decomposition W = LLT of W ,

the update γnew can be expressed as the least-squares solution

γnew = argmin
γ
||t̃− X̃2γ||2, (2.6)

where t̃ = LT t and X̃2 = LT X̃.

2.4 Penalized Mixture of Experts

In this section, we introduce the penalty term into the reformulated likelihood.

2.4.1 Updating experts and the gating network together

Combining (2.5) and (2.6), we can further simplify the update of all coefficients

of the experts and the gating network (again assuming there is no regularization) by

writing

||Y ∗ −X∗β||2 + ||z̃ − X̃2γ||2 =

Y ∗ −X∗β
z̃ − X̃2γ


T Y ∗ −X∗β

z̃ − X̃2γ

 = ||Y ∗∗ −X∗∗θ||2,

where

Y ∗∗ =

Y ∗
z̃

 and X∗∗ =

X∗ .

. X̃2

 .
Then we may write

θnew = arg min
θ
||Y ∗∗ −X∗∗θ||2. (2.7)

Note that (2.5) is an update for each EM iteration while (2.6) is an update for

each Newton Raphson iteration. We combine them together into (2.7) because in the

penalty term, we cannot separate the coefficients of the gating network from experts’

ones. Therefore we need to optimize both parts jointly. We discuss this in the next

subsection.
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2.4.2 Adding the penalty term

With the penalty term (2.4) added to the model, at each Newton-Raphson it-

eration in each Maximization step of the EM algorithm, we solve the optimization

problem

minimize
θ

||Y ∗∗ −X∗∗θ||2 + λ||Dθ||2,1. (2.8)

It is apparent that when N > P , X∗∗ has full-column rank based on the way we

construct X∗∗. With this result, we will employ the same strategy as the one in (Tib-

shirani, 2011) because our penalty is like the group-generalization of the generalized

lasso penalty. The minimization problem (2.8) is equivalent to the problem

minimize
θ

||Y ∗∗ −X∗∗θ||2 + λ||z||2,1 subject to z = Dθ.

The Lagrangian form is

L(θ, z, u) = ||Y ∗∗ −X∗∗θ||2 + λ||z||2,1 + uT (Dθ − z), (2.9)

and the dual problem for this is

minimize
u

||Ỹ − D̃Tu||2 subject to ||u||2,∞ ≤ λ, (2.10)

where Ỹ = X∗∗X∗∗+Y ∗∗ and D̃ = DX∗∗+. Here the pseudoinverse of a matrix A is

calculated as A+ = (ATA)−1AT . Since we are in the low-dimensional setting where

N > P , X∗∗+ exists.

The dual problem in (3.4) is convex and thus can be solved using any convex solver.

Nonetheless, we develop our own algorithm to solve it using blockwise coordinate

descent. We minimize over each block of length 2P of u, with all other elements of u

fixed, until convergence. The update for uj is given by

uj = Tλ

[(
(D̃T

.j)T D̃T
.j

)−1

(D̃T
.j)T (ỹ − D̃T

−.ju−j)
]

for j = 1, 2, . . . , K(K − 1)
2 , (2.11)

12
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where Ts is the truncating function

Ts(t) =


s ∗ t/||t||, if ||t|| > s

t, if ||t|| ≤ s.

Here uj and u−j denote the jth block of u and the vector u after removing the jth

block, respectively. Similarly, D̃T
.j and D̃T

−.j represent the jth column-block of the

matrix D̃T and the whole matrix D̃T after removing the jth column-block, respec-

tively. We obtain (2.11) by first differentiating the least-squares term in (3.4) with

respect to uj, setting the first derivative to 0, and solving for uj. Since we have a box

constraint on u, we apply the truncating function to this value of uj.

After u has converged, we recover the primal solution via

θnew = X∗∗+(ỹ − D̃Tunew).

This primal-dual relationship is derived by taking the gradient of (3.3) with re-

spect to θ and setting this equal to 0.

2.4.3 The full algorithm

We can now put everything together to get the algorithm to fit the penalized ME.

Full details are given in Algorithm 1.

We obtain the expression in (2.12) by differentiating (2.3) with respect to σ,

setting it to 0, and solving for σ.

2.4.4 Efficient way to initialize the parameters

The log-likelihood of ME is not convex, meaning that different starting values

may affect the final solution. Based on our experiments, choosing small initial values

(such as 0.1) for all elements of θ seems to converge to a good solution in most cases

but the computation time may be long.

13
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Algorithm 1 The algorithm to fit the penalized mixture of experts model.
1: Choose a value of lambda λ
2: Choose the maximum number of experts K
3: Initialize θ, σ and calculate h, Y ∗, X∗, p,W, z, L, z̃, X̃2, Y

∗∗, X∗∗, Ỹ , D̃
4: while θ and σ are not converged (EM loop) do

while γ is not converged (Newton-Raphson loop) do
Solve the dual problem using block coordinate descent:

minimize
u

||Ỹ − D̃Tu||2 subject to ||u||2,∞ ≤ λ

With the new u, recalculate θ, p,W, t, L, t̃, X̃2, Y
∗∗, X∗∗, Ỹ , D̃

end
Update σ

σnew =

√√√√ N∑
n=1

K∑
k=1

h
(n)
k

(
Y (n) − (βnewk )TX(n)

)2/
N (2.12)

With the new θ and σ, recalculate h, Y ∗, X∗, t, t̃, Y ∗∗, X∗∗, Ỹ , D̃
end

One way to improve the choice of initial values is to initialize β by k-means

clustering and linear regression with a ridge penalty. Specifically, first we apply k-

means clustering to the covariate X, with k equal to the maximum number of experts

we want to fit in ME. Then we fit a linear regression for data points in each cluster

with a small ridge penalty (with ridge-penalty tuning parameter equal to, say 0.0001).

As the result, we obtain k sets of coefficients from k ridge-penalized linear regressions

and we can use those coefficients as initial values for experts in ME. Xing and Hu in

(Xing and Hu, 2008) show that this strategy speeds up the convergence significantly

for the unpenalized ME. The reason we choose to use ridge regression is that the

number of observations in each cluster may be less than the number of covariates,

making it impossible to fit least-squares linear regression. In the case when there

is one or more clusters which only contain one class of a categorical covariate (for

example: say we have a gender covariate which has 2 classes (male and female). It

can happen that after doing clustering, observations in one particular cluster are

14



www.manaraa.com

all males), we fit a ridge linear regression to the whole dataset again with a small

penalization parameter. We then use the coefficients of that categorical covariate

obtained from the ridge regression fitted on the whole dataset as the initial value for

that particular covariate in those clusters.

2.4.5 High-dimensional situation

So far we have considered only the N > P case. However, the case of P > N ,

or the high-dimensional setting, is becoming increasingly common. When P > N , as

(Tibshirani, 2011) points out, there is a small complication for the dual problem of

(2.8) since X∗∗ is no longer full-column rank. To handle this situation, a quick fix is

to modify the penalty term in (2.4) by the addition of a small ridge penalty so that

the penalty becomes

Ωh
λ(θ) = λ||Dθ||2,1 + ε||θ||22, (2.13)

where ε is a small positive constant we choose. With this modified term, the mini-

mization problem in (2.8) becomes

minimize
θ

||Y ∗∗ −X∗∗θ||2 + λ||Dθ||2,1 + ε||θ||22.

This is equivalent to minimizing

||Y ∗∗∗ −X∗∗∗θ||2 + λ||Dθ||2,1,

where Y ∗∗∗ = (Y ∗∗, 0)T and X∗∗∗ = [(X∗∗)T ,
√
εI]T . Since X∗∗∗ has full-column rank,

we can proceed with the same strategy discussed in Section 4.2. Besides, we can

choose ε to be extremely small so that the difference in solutions between using Ωh
λ(θ)

and Ωλ(θ) is likely to be negligible.
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2.5 Numerical results

2.5.1 Illustration of penalty on a simulated data set

In this section we give a brief illustration of how penalized ME works in a simple

example. The data have a single covariate and 3 experts are enough to capture the

relationship between the predictor and the response. Nevertheless, we will initialize

the model with 6 experts. Then we will incrementally increase the value of λ (from

0 to 2.5) to make the coefficients of experts and gating network closer together. As a

result, we can see that the regression curve representing the conditional mean of the

response given the covariate becomes smoother and smoother. Eventually, it becomes

a straight line when λ is big enough to make all experts the same. The fitted models

are depicted in Figure 1.

Table 2.1: Models to compare with penalized ME, their tuning parameters and R
packages.

Models Tuning parameters R package
Elastic net λ and α glmnet
Decision tree Complexity rpart
Random forest Number of predictors used at each split randomForest
Gradient boosting Number of trees gbm
Gaussian process Kernel kernlab

Table 2.2: Test MSE for different models in the original unit.

Boston Galaxy Air Diabetes Prostate
Elastic net 18.05 810.76 391.74 3169.72 18.45
Decision tree 17.10 339.30 603.97 3592.72 43.46
Random forest 8.12 233.36 240.90 3343.69 19.91
Gradient boosting 11.21 328.38 247.33 3678.71 25.01
Gaussian process 10.45 225.37 322.18 3438.42 28.55
ME 10.11 326.57 304.06 3266.83 34.87
Penalized ME 10.11 324.18 303.83 3186.38 32.39
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Figure 2.1: Penalized ME curves at different values of the penalty parameter λ.
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2.5.2 Real-world applications

In this section we apply our model to the following 5 real-world regression datasets.

• Median housing price in Boston (dimension: 506x13) (Harrison Jr and Rubin-

feld, 1978)

• Radial Velocity of Galaxy NGC7531 (dimension: 323x3) (Buta, 1987)

• Air quality (dimension: 111x5) (Chambers, 2017)

• Diabetes progression (dimension: 442x10) (Efron et al., 2004)

• Prostate (dimension: 97x8) (Stamey et al., 1989)

For the second dataset, we remove all incomplete observations. We split each

dataset into: training set (70%), validation set (15%) and test set (15%), and we

compare the performance of the penalized ME to six other commonly used machine

learning models that are listed in Table 1. These methods are tuned using the valida-

tion set, except for the elastic net which uses 10-fold cross validation on the combined

training and validation set. For the penalized ME, we tune the value of λ over the

range 0 to 2.5. We then train the model on the combined training and validation set

using the chosen tuning parameters and make predictions on the test set.

We will also fit an unpenalized ME with 6 experts to see whether adding a penalty

term helps. Table 2 displays MSEs on the testing data sets for different models. As

we can see, the concept of no free lunch still applies since there is no method that wins

in all datasets. Nonetheless random forest performs particularly well in almost all

cases. The ME and penalized ME also do well compared to other models. Comparing

the ME to the penalized ME, we see that in all situations, adding the penalty term

improved the prediction accuracy, as the test MSE of the penalized ME was in every

case less than or equal to that of the unpenalized ME.
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2.6 Conclusion

Mixture of experts is a powerful and flexible machine learning method. In this

chapter, we have proposed adding a fusion penalty term to the likelihood function

with the goal of penalizing the difference between the parameters of different experts.

By doing this we can avoid overfitting and choose the best set of parameters at

the same time. This has been illustrated above as penalized ME outperformed the

unpenalized version in all data sets considered and also performed competitively when

compared to other popular machine learning methods.
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Chapter 3

Alternating Minimization and Dual Path

algorithms for Group Fused Lasso

3.1 Introduction

The use of regularization to fight overfitting has been extremely popular in recent

years. We can easily find regularized versions of almost all statistical and machine

learning procedures. The two most commonly used penalty norms in these papers

are L1 and L2 largely thanks to their convexity. The earliest and arguably the most

famous use of L1 norm in statistics is the Lasso (Tibshirani, 1996) which has the form

minimize
β

1
2 ||z −Xγ||

2 + λ
P∑
i=1
|γ| ,

where z is the response vector of length N , X is a covariate matrix of dimension

N × p, γ is the parameter vector of length P and λ is the tuning parameter that

controls the level of regularization. One appealing property of the Lasso solution

is its sparsity. When λ gets large enough, some elements of β will become zeros,

resulting in a sparse model. Therefore, unlike ridge regression, which uses L2 norm,

Lasso can do model selection and shrinkage at the same time. To get the whole

solution path of Lasso, one can use the modified LARS algorithm (Efron et al., 2004)

or the coordinate descent algorithm (Friedman et al., 2010).
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A noticeable extension of the Lasso is the Fused Lasso Signal Approximator

(FLSA) (Tibshirani et al., 2005), which take the form

minimize
β

1
2

N∑
i=1

(zi − γi)2 + λ
n∑
i=2
|γi − γi−1|.

The penalty term in FLSA encourages identicalness between adjacent coefficients,

resulting in a piecewise-constant solution. FLSA has wide applications in signal

recovery, change-point detection, smoothing, genomic segmentation and more. There

are many fast and efficient algorithms to solve FLSA in the literature. The two fastest

ones that we are aware of are (Johnson, 2013) which uses dynamic programming and

(Davies and Kovac, 2001) which applies a taut string principle. Other well-known

methods include using coordinate descent (Friedman et al., 2007) and tracing out the

whole solution path (Hoefling, 2010).

In this chapter, we will focus on a generalization of FLSA, called Group Fused

Lasso (GFL). The loss function we minimize in GFL is

L(β) = 1
2

N∑
i=1
||yi − βi||2 + λ

N∑
i=2
||βi − βi−1||. (3.1)

Here we assume yi, βi ∈ Rm, i = 1, 2, ..., N . If we think of the observed response

z in FLSA model as a time series or a profile in a certain time interval, then GFL

handles cases in which we have multiple profiles in that particular time interval. The

penalty term in GFL has the same function as the one in FLSA that is penalizing the

differences between adjacent coefficients. Since βi’s are vectors, L2 norm is used to

achieve group sparsity. Note that GFL reduces to FLSA when m = 1. In this chapter

we will propose two methods to solve the whole solution path of (3.1) efficiently,

namely Alternating Minimization (AM) and Dual Path (DP).

The chapter is organized as follows: In Section 2, we give some key properties

of GFL’s solution that will be exploited in our algorithms. Section 3 talks about

Alternating Minimization algorithm while the Dual Path algorithm is discussed in
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the following section, Section 4. Lastly, we provide an empirical evaluation of our

methods compared to other existing ones in terms of speed.

3.2 Properties of GFL’s solution path

First we define two norms that will be used later. Given an arbitrary vector

b = (bT1 , ..., bTk )T where each block bi, i = 1, 2, ...k, has length m, let

||b||2,1 =
k∑
j=1
||bj|| and ||b||2,∞ = max

1≤j≤k
||bj||.

Now we discuss some crucial properties of GFL’s solution that will be used later

in the chapter.

3.2.1 Minimum value of λ that makes all βi’s identical

In (3.1), when λ = 0, the solution is trivially βi = yi, i = 1, 2, ..., N . When λ gets

large enough, all βi’s will be identical and their common value can easily be shown

to be ∑N
i=1 yi/N . The first step to compute the solution path is to know the range

of λ, or essentially to know the minimum value of λ that makes all βi’s same (call it

λmax). We then just need to find the solution for GFL with λ ranging between 0 and

λmax since if we keep increasing λ past λmax, the solution stays the same.

We rewrite (3.1) as

L(β) = 1
2

N∑
i=1
||yi − βi||2 + λ||Dβ||2,1, (3.2)

where β is (βT1 , βT2 , ...βTN)T and D is

D =



1 −1 0 . . . 0 0

0 1 −1 . . . 0 0
... ... ... . . . ... ...

0 0 0 . . . 1 −1


⊗ Im.
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Following an argument in (Tibshirani, 2011), we reformulate (3.2) as

L(β, c) = 1
2

N∑
i=1
||yi − βi||2 + λ||c||2,1 subject to c = Dβ.

The Lagrangian is then

L(β, c, u) = 1
2

N∑
i=1
||yi − βi||2 + λ||c||2,1 + uT (c−Dβ). (3.3)

The corresponding dual problem of (3.3) is

minimize
u

1
2 ||y −D

Tu||2 subject to ||u||2,∞ ≤ λ, (3.4)

where y = (yT1 , yT2 , ...yTN)T . We observe that (3.4) can be optimized using block

coordinate descent. Specifically, we minimize over each block of length m of u, with

all other elements of u fixed, until convergence, using the formula

uj = Tλ

[(
(DT

.j)TDT
.j

)−1

(DT
.j)T (y −DT

−.ju−j)
]

for j = 1, 2, ..., N − 1. (3.5)

where DT
.j represents the jth column block of DT and T is a truncating function

satisfying that

Ts(t) =


s ∗ t/||t|| if ||t|| > s

t if ||t|| ≤ s

.

We denote the primal and dual solution as β̂ and û respectively. By differenti-

ating the Lagrangian with respect to β, setting this to 0, we have the primal-dual

relationship

β̂λ = y −DT ûλ. (3.6)

With (3.5) and (3.6), we are ready to compute λmax. First, assume λ = λ∗ and

the solution is β̂i,λ∗ = ∑N
j=1 yj/N for i = 1, 2, ...N . This mean that λ∗ ≥ λmax. We

get the corresponding dual solution by using the formula

ûλ∗ = (DT )+(y − β̂λ∗).
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where (DT )+ is the Moore−Penrose inverse of DT . Since ûλ∗ is the solution, if we

keep updating blocks of ûλ∗ using (3.5), ûλ∗ should stay the same. This can only

happen when ||ûi,λ∗|| ≤ λ∗ for i = 1, 2, ..., N − 1. Therefore, λmax = max
1,2,...,N−1

||ûi,λ∗||.

In the next section when we try to compute the solution path, we will construct an

increasing sequence of L (typically 100) values of λ from 0 to λmax and solve the GFL

at these particular values of λ.

3.2.2 Permanent fusion of adjacent coefficients

We now present and prove a useful result that will facilitate the fast computation

of the GFL’s solution path in the next section. The similar result for FLSA (GFL

when m = 1) is provided in (Friedman et al., 2007).

Theorem 1: If β̂i,λ′ = β̂i+1,λ′ , then for any λ > λ′, we have β̂i,λ = β̂i+1,λ

Proof: Our proof is largely based on the proof of Proposition 2 in (Friedman

et al., 2007). The subgradient equations of (3.1) are

β1 − y1 − λd2 = 0,

βi − yi + λ(di − di+1) = 0, i = 2, ..., N,

where di = (βi − βi−1)
/
||βi − βi−1|| if βi 6= βi−1 and di ∈ {r; ||r|| ≤ 1} if βi = βi−1.

These N equations fully characterize the solution of the GFL (Bertsekas, 1997). Now

suppose we have β̂i−h−1 6= β̂i−h = β̂i−h+1 = ... = β̂i 6= β̂i+1 for some i and h. This

implies that ||di−h|| = ||di+1|| = 1 and ||dk|| ≤ 1 for k ∈ {i − h + 1, ..., i}. Taking

differences between adjacent equations involving di−h+1, ..., di gives

Ad = 1
λ′
δy + E,
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where d = (dTi−h+1, ..., d
T
i )T , E = (dTi−h,˜

0Thm−2m, d
T
i+1)T (

˜
0hm−2m is zero vector of length

hm− 2m),

A =



2 −1 0 . . . 0 0 0

−1 2 −1 . . . 0 0 0
... ... ... . . . ... ... ...

0 0 0 . . . −1 2 −1

0 0 0 . . . 0 −1 2


⊗ Im = B ⊗ Im,

and

δy =



yi−h+1 − yi−h

yi−h+2 − yi−h+1

...

yi−1 − yi−2

yi − yi−1


.

We have d =
(

1
λ′
A−1δy + A−1E

)
and each m-length component of d has norm

2 less than or equal to 1. We focus on the second term A−1E = (B−1 ⊗ Im)E.

The explicit form of B−1 satisfies that the first and the last elements of any row are

positive and they sum to 1 (Schlegel, 1970). Since all m-length components of E

also have L2 norm less than or equal to 1, the weighted sum of any two of those

components with positive and less than 1 weights will result in a vector with L2 norm

less than or equal to 1. Therefore, all m-length components of (A−1E) also have L2

norm less than or equal to 1 as well. When we increase λ from λ′, 1
λ
A−1δy becomes

smaller in absolute value elementwise while (A−1E) are unaffected. As a result, each

m-length component of d still has L2 norm less than or equal to 1, implying that

identical coefficient vectors stay identical when λ increases. �
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3.3 Alternating Minimization algorithm

In this section we discuss about the AM algorithm in general and how it can be

applied to GFL.

3.3.1 General formula for AM algorithm

Alternating Minimization is a variant of augmented Lagrangian method. Suppose

we are trying to optimize the following problem

minimize f(x) + g(v)

subject to Ax+Bv = k.

The Lagrangian is

L(x, v, p) = f(x) + g(v) + pT (k − Ax−Bv).

where p is a Lagrangian multiplier. The update of x, v and p respectively are

xnew = arg min
x
L(x, v, p)

vnew = arg min
x

[
L(x, v, p) + ν

2 ||k − Ax−Bv||
2
]

pnew = pcurrent + ν(k − Axnew −Bvnew),

where ν is an optimization parameter we choose. We keep iterating until convergence.

A complete treatment of AM can be found in (Tseng, 1991).

3.3.2 Reformulation of GFL

In this subsection we work with a slight variant of GLF that takes the form

minimize
β

1
2

N∑
i=1

wi||yi − βi||2 + λ
N∑
i=2
||βi − βi−1||, (3.7)

where wi, i = 1, 2, ..., N are known scalars that represent the weight for each observed

response vector yi. The reason behind the use of such formula will be made clear in
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the next subsection. We also denote w as (w1, w2, ..., wN)T . Clearly, when all wi’s are

equal to 1, we have the GFL back.

First we recast (3.7) as a constrained optimization problem to fit in AM framework

minimize
β

1
2

N∑
i=1

wi||yi − βi||2 + λ
N∑
i=2
||vi||

subject to βi − βi−1 − vi = 0.

AM updates β by minimizing the Lagrangian, namely

minimize
β

1
2

N∑
i=1

wi||yi − βi||2 +
N∑
i=2

pTi (βi − βi−1 − vi).

The solution for this minimization problem is

βnewi =



yi − pcurrenti /wi if i = 1

yi + (pcurrenti−1 − pcurrenti )/wi if i = 2, ..., N − 1

yi + pcurrenti−1 /wi if i = N

.

The update for vi, i = 2, ..., N is

vnewi = arg min
vi

[
λ||vi||+

ν

2 ||βi − βi−1 − vi||2 − pTi (βi − βi−1 − vi)
]

= arg min
vi

[
1
2 ||vi − β

new
i + βnewi−1 −

pcurrenti

ν
||2 + λ

ν
||vi||

]

=
(

1− λ

ν

/
||βnewi − βnewi−1 + pcurrenti

ν
||
)

+

(
βnewi − βnewi−1 + pcurrenti

ν

)
.

The last equality is the proximal map of L2 norm (Chi and Lange, 2015). Lastly, the

update of pi, i = 2, ..., N is obtained directly from the general AM formula, which is

pnewi = pcurrenti + ν(vnewi − βnewi + βnewi−1 ).

We keep iterating between βi’s, vi’s and pi’s until convergence.
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3.3.3 Fusion of neighboring coefficients along the solution path

Theorem 1 says that once two or more neighboring coefficient vectors are fused

(identical), they will never become different again as we move forward along the path

(λ increases). With this nice property, we can discard all but one of those identical

coefficient vectors and collapse the problem into one with fewer parameters.

More specifically, assume we are currently at λ = λ′ along the solution path and

we have removed k observations before we get to λ′. Our original GFL problem then

becomes

minimize
β

1
2

N−k∑
i=1

wi||yi − βi||2 + λ′
N−k∑
i=2
||βi − βi−1||.

Note that we start at λ = 0 with all wi’s equal 1 and k = 0. Now if after solving the

above optimization we have β̂i = β̂i−1, we modify the problem as follows:

• ȳ ← (wi−1yi−1 + wiyi)/(wi−1 + wi).

• w̄ ← wi−1 + wi.

• yi−1 ← ȳ.

• wi−1 ← w̄.

• Remove yi, βi, wi and shift all indices greater than i to the left by 1.

Since we merge the weights of coefficient vectors that are the same, some weights

will be bigger than 1. Therefore, in the previous subsection, we have to deal with

the formula (3.7) instead of the original GLF’s loss function. Also, by removing

observations and their corresponding coefficients, we have fewer and fewer parameters

to solve as we move towards the end of the path. This fact greatly speeds up the

computation of the solution path of GFL.
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3.3.4 Other details

We implement acceleration for our AM algorithm using Nesterov technique de-

scribed in (Goldstein et al., 2014). We also choose ν using the Anderson-Morely upper

bound (Anderson Jr and Morley, 1985). One practical trick to speed up convergence

is to initialize βi at a particular value of λ to be 2a− b where a and b are the values

of βi at the last λ and the second last λ respectively.

3.4 Dual Path algorithm

In this section, we approach the GFL problem in a different direction, namely its

dual problem.

3.4.1 Solving the dual problem

We also work with (3.7) in this section, for the same reason mentioned in the

previous section. The approach to obtain the dual problem for (3.7) is very similar

to the one described in Subsection 2.1. The dual problem of (3.7) is

minimize
u

1
2 ||Wy −W−1DTu||2 subject to ||u||2,∞ ≤ λ,

where W = W ′⊗ Im and W ′ is a diagonal matrix with the diagonal being the vector

w. To optimize this problem, we minimize over each block of length m of u, with all

other elements of u fixed, until convergence, using the formula

unewj = Tλ

[(
(D̃T

.j)T D̃T
.j

)−1

(D̃T
.j)T (ỹ − D̃T

−.ju
current
−j )

]
for j = 1, 2, ..., N − 1.

where D̃T
.j = W−1DT and ỹ = Wy. The relationship between primal-dual solutions

is

β̂λ = y −W−1DT ûλ. (3.8)
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3.4.2 Fusion of neighboring primal coefficients along the solution path

As discussed in Subsection 3.3.3, as we move forward along the path, some coef-

ficient vectors will become fused. This leads to a different form of the GFL’s primal

problem and consequently a different form of the dual problem as well. Specifically,

in addition to the modifications in Subsection 3.3.3, we also need to:

• Remove the ith row and ith column of W ′.

• Recalculate W .

• Remove the (i− 1)th block of u

• Remove the last m rows and columns of D

Here we also have fewer parameters (fewer blocks of u) to solve as we move further

along the path, reducing the computational burden.

3.4.3 Other details

Similar to the AM algorithm, significant speedup can be achieved by initializing

ui at a particular value of λ to be 2a − b where a and b are the values of ui at the

last λ and the second last λ respectively.

3.5 Numerical results

In this section we evaluate our two algorithms with other existing methods in

terms of speed. Both simulated and real datasets are used. The two competitors

we will consider are the algorithms in (Bleakley and Vert, 2011). More specifically,

they convert (3.1) into a group lasso problem and either solve it directly (GL) or ap-

proximate the solution path using group-LARS (GLARS). There are other proposed

solvers for (3.1), namely (Alaíz et al., 2013) and (Wytock et al., 2014). However, we
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cannot find the implementations of their methods and their focus are mainly to solve

(3.1) at a certain value of λ, not the entire solution path.

We also want to note that our two algorithms are coded entirely in C++ with Ar-

madillo library (Sanderson and Curtin, 2016) while the implementation of (Bleakley

and Vert, 2011) is in Matlab. All numerical computations were carried out on a Intel

Core i5 Macbook Air.

3.5.1 Simulated datasets

We simulate datasets with different sample sizes N and different numbers of pro-

files m. For the first profile, the first 30% of observations have values 0, the next 30%

are 3 and the remaining 40% are −1. The values of datapoints in each additional

profile will be the values of the last profile plus 0.5. All datapoints are corrupted by

white noise from standard normal distribution. Figure 1 shows an example where

N = 100 and m = 3. We limit the maximum sample size n to be 1000 solely be-

cause the time it takes GL to run becomes unmanageable at bigger sample sizes. The

timings for different methods under different setups are presented in Table 3.1.

Table 3.1: Timings (sec) for different optimization methods on different simulation
settings

m=1 m=2
N 10 50 100 500 1000 10 50 100 500 1000
GL 0.04 0.42 1.37 47.63 227 0.03 0.44 1.48 59.67 387
GLARS 0.005 0.02 0.03 0.16 0.41 0.005 0.02 0.03 0.16 0.42
AM 0.003 0.013 0.023 0.60 2.88 0.009 0.04 0.07 1.20 5.93
DP 0.021 0.08 0.33 16.08 95.2 0.025 0.12 0.53 21.36 127

m=3 m=4
N 10 50 100 500 1000 10 50 100 500 1000
GL 0.04 0.42 1.46 74.63 508 0.05 0.48 1.52 96.57 712
GLARS 0.006 0.02 0.04 0.17 0.45 0.007 0.03 0.03 0.18 0.48
AM 0.015 0.12 0.14 2.31 10.3 0.015 0.13 0.18 3.18 17.2
DP 0.027 0.17 0.57 26.29 150 0.027 0.17 0.66 33.52 178

31



www.manaraa.com

Figure 3.1: Example of a simulated dataset with N = 100 and m = 3. Points with
the same color belong to the same profile.

We can see that the AM algorithm totally outperforms the exact solver GL. On

the simulation settings with the largest sample size, the AM is faster than GL by at

least 50 times. DP is slower than AM but the former is still significantly faster than

GL, especially as we increase m. We want to note that even though GLARS seems

to be incredibly fast, this method only solves an approximation of (3.1). A property

of this approximation that allows fast computation is the piecewise linear property

of the solution path. In general, the solution path for group lasso (the problem that

GL solves) is not piecewise linear (Yuan and Lin, 2006).

3.5.2 Real-world datasets

The main application of Group Fused Lasso and Fused Lasso in general is smooth-

ing and change-point detection in mean. Therefore we choose two datasets in which

it is of interest to detect change-points accurately and efficiently. The first dataset is
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the microarray aCGH (James and Matteson, 2013). This dataset contains microarray

data of 43 patients who suffer from bladder tumor. Since patients share the same

disease, we can use the aggregated data to detect the change-points for all of them.

A change-point is defined to be a change in mean of aCGH number of copies. Figure

3.2 shows the aCGH data for the first three patients. The second dataset includes the

weekly log returns of the top 30 companies (excluding Kraft Foods Inc.) whose stock

prices are used to calculate the Dow Jones Industrial Average (DJIA) (James and

Matteson, 2013). Each stock has 1139 observations, representing weekly data from

04/1990 to 01/2012. Just like in the first dataset, we expect the price of these stocks

to be influenced by the same macro environment so we can use all data to detect the

change-points in price jointly. Figure 3.3 shows the weekly log returns for the first 3

companies. We consider a maximum of 20 individuals at a time in the first dataset

and 20 stocks at the time in the second dataset. Table 3.2 contains the timing results

for all 4 optimization methods on the 2 datasets. All results in the subsection are

obtained on a c5d.xlarge instance on Amazon Web Services. Again we can see that

the AM and DP algorithms perform much better than GL in terms of speed.

Table 3.2: Timings (sec) for different optimization methods on 2 real-world datasets.
(*GLARS only provides the approximated solution.)

Dataset Method m=1 m=2 m=3 m=5 m=10 m=20
aCGH GL 83 148 208 330 1209 5374

GLARS 0.007 0.009 0.013 0.21 0.91 3.17
AM 0.21 0.74 2.85 5.23 25.6 113.8
DP 14.9 26.7 32.3 52.1 194 880

DJIA GL 42 76 101 134 623 3081
GLARS ≈ 0 0.008 0.026 0.074 0.23 1.62
AM 0.09 0.73 1.91 3.50 17.2 72.9
DP 8.49 12.7 19.5 31.4 148 572
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Figure 3.2: The aCGH data for the first 3 individuals
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Figure 3.3: Log returns for DJIAindex from 04/1990 to 01/2012 of 3 companies

3.6 Conclusion

Alternating Minimization and Dual Path algorithms seem to be promising meth-

ods to solve the Group Fused Lasso problem. While the Dual Path algorithm is quite

problem-specific, Alternating Minimization is a very generic method that can be ap-

plied to a broad class of problem, especially when there are some types of norm in

the constraint since each update has closed form. Again we also want to note that

our methods are coded in C++ which is usually faster than Matlab, the software in

which our competing methods are coded in. Nevertheless, the reduction in compu-

tation time from using a powerful optimization method (AM) and from strategically

merging parameters to simplify the problem is quite remarkable.
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Chapter 4

Semiparametric Transformation Models for

Complete and Survival data

4.1 Introduction

Linear regression and analysis of variance (ANOVA) are widely used for studying

the relationship between a response and multiple covariates. One important require-

ment of such models is that the response variable needs to have a normal distribution

with a constant variance given the covariates. However, this assumption may not

hold in many real life examples, and this violation can be detected by some diagnos-

tic methods based on residuals. A common remedy is to apply some transformation of

the response variable so that the transformed response variable meets the normality

requirement and then one can refit the model with the transformed response.

One popular transformation model for this strategy is the so-called Box-Cox trans-

formation in Box and Cox, 1964, which takes the following form

y(λ) =


yλ−1
λ

if λ 6= 0

log(y) if λ = 0,

where y is a original positive response and y(λ) is the transformed response. As a

member of the power transformation family, the Box-Cox transformation is easy to

understand and widely used.

There are also various extensions of Box-Cox transformation models that allow

negative values for the response variable. For example, Box and Cox, 1964 proposed

a modified transformation model with an additional shift parameter. Manly, 1976
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proposed an exponential transformation that can transform skewed unimodal dis-

tributions to approximately normal ones. Schlesselman, 1971 proposes a modified

version of the Box-Cox transformation that preserves scale invariance in likelihood

procedures. Another notable and more recent contribution to this topic was made by

Yeo and Johnson, 2000, which can handle negative values of the response and also

enjoys many of the desirable features of the Box-Cox transformation.

Although these Box-Cox transformation models are widely adopted in the litera-

ture when the transformation of the response is needed, these models may not always

provide adequate fit for some specific data sets. This is not surprising because these

transformation models are parametric and can be overly restrictive in many cases.

In fact, the Box-Cox transformation is not recommended if the estimated λ from the

Box-Cox transformation has absolute value close to 2 or bigger.

In this chapter, we aim to propose a more flexible regression model that allows the

response variable to have an unknown continuous distribution. The proposed model

is based on the fact that if the response variable Y has a continuous distribution with

a cumulative distribution function (CDF) F , then F (Y ) has a uniform distribution

on [0, 1]. It is also known that Φ−1(U) has a standard normal distribution if U has a

uniform distribution on [0, 1], where Φ−1 is the inverse CDF of the standard normal

distribution. Thus, the transformation α = Φ−1 ·F can convert the original response

variable Y that has an arbitrary distribution to a normal random variable. Since

both Φ−1 and F are increasing functions, the transformation α is also increasing.

This idea can be extended to regression settings by incorporating covariates. Let

X denote the vector of covariates of length p. We propose the following transformation

model

α(Y ) = XTβ + ε, (4.1)

where ε ∼ N(0, 1), and β is the vector of regression coefficients, and α is an unspec-

ified monotone transformation function. This model assumes that there is a linear
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relationship between the transformed response and the covariates with an additional

standard normal random error.

Model (4.1) is referred to as the semiparametric probit model and has been stud-

ied primarily in the literature of survival analysis as a member of a general class of

linear transformation models. Instead of the standard normal distribution, taking the

extreme value distribution and the standard logistic distribution for the distribution

of ε leads to two most popular survival models: the proportional hazards (PH) model

and the proportional odds (PO) model, respectively. The linear transformation mod-

els have been studied extensively, and existing work include Zhang et al., 2013, Cheng

and Wang, 2011, Xu et al., 2019 for current status data, Zhang, 2009, Zeng et al.,

2016 for general interval-censored data, and Li et al., 2010 for panel count data among

others. Lin and Wang, 2010 developed an efficient Bayesian estimation approach for

regression analysis of interval-censored data specifically under the probit model.

Although the semiparametric probit model has been essentially studied through

the linear transformation models in survival literature, direct study of the semipara-

metric probit model for complete and right-censored data is rare and clearly under-

studied. In this chapter, we first propose a novel EM algorithm to fit the semipara-

metric probit model under complete data and then generalize it to right-censored

data. Our method allows estimations the transformation function and the regression

parameters simultaneously. The proposed approaches enjoy several appealing prop-

erties such as being easy to implement, robust to initial values, fast to converge and

providing variance estimation in closed forms.

The remainder of this chapter is organized as follows. Section 2 gives an overview

about our nonparametric transformation model. Sections 3 and 4 present the details

of the proposed methods for complete data and right-censored data, respectively.

Sections 5 provides details about model diagnostics. Section 6 shows the results from

38



www.manaraa.com

comprehensive simulation studies and Section 7 provides two real life applications of

our methods. Some concluding remarks are given in Section 8.

4.2 Properties of the semiparametric probit model

Model (4.1) is a semiparametric model since the transformation function is non-

parametric and the regression part has a parametric form. Unlike the usual linear

regression model, the variance of random error is fixed as 1 in the proposed model for

identifiability since both the function α and β are unknown in this model. Also, there

is no intercept in the linear regressor in the right side of model (1) for identifiablity

since an intercept can be absorbed into the transformation.

Since α is nondecreasing, the cumulative distribution function (CDF) of Y given

X under the probit model (4.1) is

F (y) = P
(
Y ≤ y|X

)
= P

{
α(Y ) ≤ α(y)|X

}
= P

{
XTβ + ε ≤ α(y)|X

}
= P

{
ε ≤ α(y)−XTβ|X

}
= Φ

{
α(y)−XTβ

}
,

where Φ is the CDF of the standard normal distribution. Differentiating this CDF

with respect to y yields the probability density function (pdf) of Y in the form of

f(y) = φ{α(y)−XTβ}α′(y),

where φ(.) is the pdf of the standard normal distribution, and α′ is the first derivative

of α. The hazard function of Y takes the form

λ(y|X) = α′(y)φ{α(y)−XTβ}[1− Φ{α(y)−XTβ}]−1.

This hazard function allows the hazard curves to cross for different predictor val-

ues, which is not maintained by the Proportional Hazards (PH) model. The transfor-

mation function α can be also interpreted as the inverse-probit transformed baseline

CDF under the probit model, while βl, the lth element of β, can be interpreted as
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the expected change in the inverse-probit transformed failure time due to a 1 unit

increase of the lth covariate while keeping all other covariates fixed.

Since the transformation function α is an unspecified nondecreasing function with

infinite dimensions, estimation under the probit model is challenging. There does not

seem to exist a partial likelihood, as in the case of the PH model for right-censored

data, which allows one to estimate the regression parameters directly without the

need to estimate the unknown baseline function.

Following the strategy of Lin and Wang (2011), we propose to model α with the

monotone splines of Ramsay, 1988. Specifically, it is assumed that α can be written

as a linear combination of monotone splines as

α(·) = γ0 +
K∑
k=1

γkbk(·), (4.2)

where the bk’s are the monotone spline (I-spline) basis functions and {γk}Kk=0 are

nonnegative unknown spline coefficients. All bk’s are constructed before the analysis

and are non-decreasing from 0 to 1. The constraints of these spline coefficients ensure

that α is nondecreasing.

The monotone splines are very flexible for approximating unknown non-decreasing

functions with only a finite number of coefficients. This essentially coverts a semipara-

metric problem into a parametric problem, but does not requires any specific assumed

form for the target function. Since the spline basis functions are completely deter-

mined once the knots and degree are specified, they do not need to be re-calculated

during the estimation process.

An appealing byproduct of the use of the monotone spline representation of α in

(4.2) is that the derivative of α takes the following explicit form,

α′(·) =
K∑
k=1

γkmk(·), (4.3)

where mk(·) is the first derivative of bk(·) for k = 1, . . . , K. These mk(·)’s are often

referred to as M splines in the literature (Ramsay, 1988).
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4.3 The proposed estimation approach for complete data

We consider complete data under the semiparametric probit model. Let {yi, Xi}, i =

1, 2, . . . , N be an iid sample from the joint distribution of (Y,X). Treating covariates

Xi as fixed, the observed likelihood under the probit model takes the form

Lo =
N∏
i=1

f(yi|Xi) =
N∏
i=1

φ{α(yi)−XT
i β}α′(yi)

∝
N∏
i=1

(
exp

[
− 1

2
{
γ0 +

K∑
k=1

γkbk(yi)−XT
i β
}2]{ K∑

k=1
γkmk(yi)

})
.

The unknown parameters to be estimated are the regression parameters β and spline

coefficients γk’s.

Even though there are only a finite number of unknown parameters, direct opti-

mization of this likelihood encounters many numerical problems such as non-convergence.

To overcome this problem, we explore an EM algorithm by Dempster et al., 1977 be-

low. First we consider the following data augmentation to get rid of the summation

inside of the multiplicative terms of the likelihood. Introduce a latent multinomial

vector ui = (ui1, ..., uiK) ∼M(1,pi), a multinomial distribution with the total count

1 and pi =
(

1
K
, 1
K
, . . . , 1

K

)
, for i = 1, 2, ..., N . The augmented likelihood treating all

ui’s as missing data is

Lc =
N∏
i=1

(
exp

[
− 1

2
{
γ0 +

K∑
k=1

γkbk(yi)−XT
i β
}2] K∏

k=1

{
γkmk(yi)

}uik)

up to a multiplicative constant. Integrating ui’s out of Lc leads to the observed

likelihood. This augmented likelihood will be used as the complete data likelihood

for the derivation of our EM algorithm.

Let θ be the vector of all unknown parameters including β and γl’s and let D

denote the observed data. The E-step of the EM algorithm requires taking the con-

ditional expectation of the logarithm of the complete likelihood with respect to the

latent vectors ui’s given the observed data D. This yields

Q(θ, θ(d)) =
N∑
i=1

[
− 1

2
{
γ0 +

K∑
k=1

γkbk(yi)−XT
i β
}2

+
K∑
k=1

h
(d)
ik

{
log(γk)

}]
,
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where θ(d) is the current value of θ at the d-th step of the EM algorithm and

h
(d)
ik = E(uik|θ(d),D) = γ

(d)
k mk(yi)∑K

l=1 γ
(d)
l ml(yi)

for k = 1, · · · , K and i = 1, · · · , n.

The M-step of the EM algorithm is to maximize Q(θ, θ(d)) with respect to θ. It

turns out that there is no closed form expression for the global maximizer of Q(θ, θ(d)).

To overcome this problem, we update the unknown parameters sequentially in the

order of β and γl for l = 0, 1, · · · , K. That is, we first maximize the Q function with

respect to β given γl = γ
(d)
l for all l. This leads to a least squares solution

β(d+1) = (XTX)−1XT (γ(d)
0 1N + Bγ(d)),

where 1N is a vector of length N with all entries equal to 1, B is a N × K matrix

with (i, k)-th entry equal to bk(yi), and γ = (γ1, γ2, ..., γK)T .

Then we maximize the Q function with respect to γ0 given β = β(d+1) and γl = γ
(d)
l

for l > 0. This leads to closed expression for γ(d+1)
0 , which is

γ
(d+1)
0 = 1

N

N∑
i=1

{
XT
i β

(d+1) −
K∑
k=1

γ
(d)
k bk(yi)

}
.

Now we present the details of updating the γk’s sequentially. For any k ≥ 1,

suppose that the γ(d+1)
l ’s have been obtained for all l < k and let Q(d)

k (γk) be the

updated Q function with β = β(d+1) and γl = γ
(d+1)
l for all l < k and γl = γ

(d)
l for all

l > k. Differentiating Q(d)
k (γk) with respect to γk yields

∂Q
(d)
k (γk)
∂γk

=
N∑
i=1

[
− bk(yi)

{
γ

(d+1)
0 +

∑
l<k

γ
(d+1)
l bl(yi) +

∑
l>k

γ
(d)
l bl(yi)−XT

i β
}

+ h
(d)
ik

γk

]
.

Setting ∂Q(d)
k (γk)/∂γk = 0 leads to the following quadratic equation for γk

γ2
k

N∑
i=1

b2
k(yi) + γk

N∑
i=1

[
bk(yi)

{
γ0 +

∑
l 6=k

γlbl(yi)−XT
i β
}]
−

N∑
i=1

h
(d)
ik = 0. (4.4)

Define ak = ∑N
i=1 b

2
k(yi), e

(d)
k = ∑N

i=1 h
(d)
ik , and

c
(d)
k =

N∑
i=1

[
bk(yi)

{
γ

(d+1)
0 +

∑
l<k

γ
(d+1)
l bl(yi) +

∑
l>k

γ
(d)
l bl(yi)−XT

i β
(d+1)

}]
.
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Since ak > 0 and e(d)
k > 0, there is a unique positive solution to (4.4). This together

with the fact ∂2Q
(d)
k (γk)/∂γ2

k = −γ−2
k e

(d)
k < 0 yields a unique maximizer γ(d+1)

k of

Q
(d)
k (γk) given by

γ
(d+1)
k =

−c(d)
k +

√
c

(d)2
k + 4ake(d)

k

2ak
.

Thus, we update the γ(d+1)
k ’s sequentially for k = 1, · · · , K. This algorithm is essen-

tially an Expectation/Conditional Maximization (ECM) algorithm, which was devel-

oped by Meng and Rubin, 1993.

Algorithm 2 The ECM algorithm for complete data.

1: Let d = 0 and initialize β(d),γ(d)
0 , and γ(d).

2: Calculate h(d)
ik = γ

(d)
k
mk(yi)∑K

l=1 γ
(d)
l
ml(yi)

for i = 1, 2, ..., N and k = 1, 2, ..., K.

3: Calculate β(d+1) = (XTX)−1XT (γ(d)
0 1N + Bγ(d)).

4: Calculate γ(d+1)
0 = ∑N

i=1

{
XT
i β

(d+1) −∑K
k=1 γ

(d)
k bk(yi)

}
/N .

5: Calculate γ(d+1)
k =

−c(d)
k

+
√
c

(d)2
k

+4ake
(d)
k

2ak
sequentially for k = 1, 2, ..., K. Then let

d = d+ 1.
6: Repeat steps 2 ∼ 5 until convergence.

We summarize our proposed ECM algorithm in succinct manner in Algorithm 2.

This algorithm is very appealing because all parameters are updated in simple closed-

form at each iteration. Let β̂, γ̂0 and γ̂ denote the converged coefficients of the EM

algorithm. The variance estimates of β̂, γ̂0 and γ̂ can be obtained in closed form by

using the Louis method. We defer this part to next section, which provides a unified

formula of the variance estimates for both cases of complete and right-censored data.

4.4 The proposed approach for right-censored data

In this section, we consider the right-censored failure data. Right-censored data

are very common in many fields such as real life epidemiological, social behavioral, and

medical studies. Subjects are usually under continuous monitoring and the failure

time of interest would be exactly known if the failure occurred during the study.
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However, many subjects do not experience the failure events throughout the study,

and in this case we say their failure times are right censored at the study end time or

at the censoring time. The censoring time can be the real end time of the study or the

dropout time or death time for a specific subject. Right-censored data are a mixture

of exactly observed observations and right-censored observations for the failure time.

Let T be the failure time of interest, C be a random censoring time, and X be a

vector of covariates. For right-censored data, the observed time is the minimum of

the failure time and the censoring time, i.e., Y = min(T,C). Define ∆ = I(T ≤ C)

be the censoring variable, taking the value 1 for exactly observed and 0 for right-

censored observation. In this section, we assume that T follows a semiparametric

probit model as in model (1), and the primary interests are to estimate the covariate

effects β on the failure time T and the associated survival functions.

Let Di = {yi, Xi, δi}Ni=1 be an iid copy of D = {Y,X,∆} for subjects i = 1, · · · , N .

Under the non-informative assumption that the failure time and the censoring time

are conditionally independent given the covariates, the observed likelihood can be

written as

Lobs =
N∏
i=1

f(yi|Xi)δi{1− F (yi|Xi)}1−δi

=
N∏
i=1

[
φ
{
α(yi)−XT

i β
}
α′(yi)

]δi[
1− Φ

{
α(yi)−XT

i β
}]1−δi

, (4.5)

where α and α′ are modeled with splines as in Section 2. As in Section 3, we seek an

EM/ECM to estimate the parameters θ = (β′, γ0, γ
′)′ jointly. Motivated by Lin and

Wang, 2010, we introduce the normal latent variables

Zi = N(α(yi)−XT
i β, 1), i = 1, 2, . . . , N,

with constraints Zi < 0 for all censored subjects with δi = 0 based on the fact that

1− F (yi) = 1− Φ{α(yi)−XT
i β} =

∫ 0

−∞
φ{zi − α(yi) +XT

i β}dzi.
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For the purpose of notational convenience, we define Zi = 0 for all exactly observed

subjects with δi = 1. Conditional on the latent variables Zi’s, the augmented data

likelihood takes the form

La1 =
N∏
i=1

φ
{
Zi − α(yi) +XT

i β
}
{α′(yi)}δi

with the constraints Zi = 0 if δi = 1 and Zi < 0 if δi = 0 for i = 1, · · · , N . Integrating

this augmented likelihood with respect to all Zi’s leads back to the observed likelihood

(4).

We use the same strategy to handle the summation of M splines in α′, and intro-

duce multinomial latent vectors ui’s with ui = (ui1, · · · , uiK) ∼ M(1,pi), a multi-

nomial distribution with the total count 1 and pi =
(

1
K
, 1
K
, . . . , 1

K

)
, for all censored

subjects with δi = 0. The new augmented likelihood is now

Lc =
N∏
i=1

exp
[
− 1

2
{
Zi − γ0 −

K∑
k=1

γkbk(yi) +XT
i β
}2] K∏

k=1

{
γkmk(yi)

}δiuik
,

up to a multiplicative constant. This augmented likelihood will be used as the com-

plete data likelihood for the derivation of our ECM algorithm.

The conditional expectation of the log of the complete likelihood with respect

to the latent variables Zi’s and uik’s given the observed data D and the current

parameters θ(d) takes the form

Q(θ, θ(d)) = −1
2

N∑
i=1

{
γ0 +

K∑
k=1

γkbk(yi)−XT
i β
}2

+
N∑
i=1

K∑
k=1

h
(d)
ik log(γk)δi

+
N∑
i=1

E(Zi|Di, θ(d))
{
γ0 +

K∑
k=1

γkbk(yi)−XT
i β
}
,

up to an additive constant, where h(d)
ik = E(uik|θ(d),D) and E(Zi|D, θ(d)) are the

conditional expectations of uik and Zi, respectively. All these conditional expectations

have explicit forms, such that

h
(d)
ik = γ

(d)
k mk(yi)∑K

l=1 γ
(d)
l ml(yi)

,
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and

E(Zi|D, θ(d)) =


µ

(d)
i − [Φ{µ(d)

i }]−1φ{µ(d)
i }, if δi = 0

0, if δi = 1,

where µ(d)
i = γ

(d)
0 + ∑K

k=1 γ
(d)
k bk(yi) − XT

i β
(d), for k = 1, · · · , K and i = 1, · · · , N .

Similar to the ECM for the case of complete data in Section 3, we seek to optimize

the Q function with respect to β, γ0, and all the elements of γ sequentially and based

on the newly updated values for the other parameters. Similar to the derivation

process in Section 3, the strategy leads to the following updating of all parameters in

closed form,

β(d+1) =
{ N∑
i=1

XiX
T
i

}−1 N∑
i=1

Xi

{
γ

(d)
0 +

K∑
k=1

γ
(d)
k bk(yi)− E(Zi|Di, θ(d))

}
,

γ
(d+1)
0 = 1

N

N∑
i=1

[
XT
i β

(d+1) + E(Zi|Di, θ(d))−
{ K∑
k=1

γ
(d)
k bk(yi)

}]
,

and

γ
(d+1)
k =

−c(d)
k +

√
c

(d)2
k + 4ake(d)

k

2ak
,

where ak = ∑N
i=1 b

2
k(yi), e

(d)
k = ∑N

i=1 δih
(d)
ik , and

c
(d)
k =

N∑
i=1

bk(yi)
{
γ

(d+1)
0 +

∑
l<k

γ
(d+1)
l bl(yi) +

∑
l>k

γ
(d)
l bl(yi)−XT

i β
(d+1) − E(Zi|Di, θ(d))

}
for k = 1, · · · , K.

Let θ̂ = (β̂′, γ̂0, γ̂
′)′ denote the converged values of the ECM sequence of θ(d)’s. The

variance estimates var(θ̂) can be calculated as the inverse of the observed information

matrix {I(θ̂)}−1, where I(θ) can be obtained using the missing data principle (Louis,

1982),

I(θ) = −∂
2Q(θ, θ̂)
∂θ∂θ′

− var
(
∂logLc
∂θ

)
.

The detailed formulas are displayed in the Appendix. It is clear that all quantities

involved have closed-form expressions, which lead to exact and fast calculations. Note

that these formulas also apply for the variance estimates for the case of complete data,

which are a special case of right-censored data taking δi to be 1 for all subjects.
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Algorithm 3 The ECM algorithm for right-censored data.

1: Let d = 0 and initialize β(d),γ(d)
0 and γ(d).

2: Calculate h(d)
ik = γ

(d)
k
mk(yi)∑K

l=1 γ
(d)
l
ml(yi)

for i = 1, 2, ..., N and k = 1, 2, ..., K.

3: Calculate β(d+1) =
{∑N

i=1 XiX
T
i

}−1∑N
i=1 Xi

{
γ

(d)
0 + ∑K

k=1 γ
(d)
k bk(yi) −

E(Zi|Di, θ(d))
}
.

4: Calculate γ(d+1)
0 = ∑N

i=1

[
XT
i β

(d+1) + E(Zi|Di, θ(d))−
{∑K

k=1 γ
(d)
k bk(yi)

}]
/N .

5: Calculate γ(d+1)
k =

−c(d)
k

+
√
c

(d)2
k

+4ake
(d)
k

2ak
for k = 1, 2, ..., K and let d = d+ 1.

6: Repeat steps 2 ∼ 5 until all convergence.

4.5 Model diagnosis

4.5.1 For complete data

Model diagnosis is important to address whether the analysis based on a specific

model is valid for a specific data set. To evaluate the validity of the probit model

assumption for complete data, first we define the following residuals

ri = α̂(yi)−XT
i β̂, (4.6)

for i = 1, · · · , n. If the probit model assumption is valid, these residuals ri’s can

be considered as a random sample from a standard normal distribution. Based on

this fact, one can view quantile-quantile (Q-Q) plot by Gnanadesikan and Wilk, 1968

to check the validity of the model assumption. One can conclude a violation of the

probit model assumption if there is a serious deviation of the observations from a

straight line in the Q-Q plot. Alternatively one can calculate the empirical CDF

F̂n(t) = 1
n

∑n
i=1 1(ri≤t) based on the sample of residuals ri’s and compare F̂n with the

standard normal CDF Φ. The probit model assumption is considered problematic if

there is a clear difference between F̂n and Φ. In addition to the visual plots, formal

tests such as Shapiro-Wilk test by Shapiro and Wilk, 1965 can also be used to check

whether the residuals follow a normal distribution. There is a built-in function in R

by Team, 2013 called "shapiro.test" that performs the Shapiro-Wilk test.
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4.5.2 For censored data

For censored data, we can define scaled residuals ri’s as in (4.6). Notice that ri is

right-censored observation of εi for subject i with δi = 0. Thus, the ri’s form a right-

censored random sample from a standard normal distribution if the probit model

assumption is valid. Thus, one can obtain the Kaplan-Meier (Kaplan and Meier,

1958) estimate Sn(t) of the true survival function based on the sample (ri, δi)’s and

compare it with the survival function 1 − Φ(t) under the probit model. The probit

model assumption is considered problematic if there is a clear difference between the

empirical survival function Ŝn and the true survival function 1−Φ. Formal tests such

as the one sample log-rank test by Breslow, 1975 can be used to compare Ŝn and

1− Φ.

4.6 Simulation results

Extensive simulation studies were conducted to evaluate the performance of the

proposed methods in different settings. The failure time T was generated from the

following probit model

F (t|x) = Φ(α(t) + β1X1 + β2X2),

with two continuous and discrete covariates X1 ∼ U(0, 1) and X2 ∼ Bernoulli(0.5).

Three different functions were considered for the true function α(t), with two Box-Cox

transformations log(t) and (t0.1 − 1)/0.1 and a non-Box-Cox transformation t3 + t.

The true values of β1, β2) were taken to be (0, 0), (0, 1), (1, 0), and (1,−1)}. The

censoring time C was generated from an exponential distribution exp(λ) with mean

parameter λ. Four scenarios were considered with different right-censoring rates

of 0%, roughly 20%, 40% and 60% by taking appropriate values of λ for different

parameter configurations. The 0% censoring rate corresponds to the case of complete
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data. For each setup, 500 data sets were generated with 200 observations for each

data set.

To implement our methods, the monotone splines were specified with degree 2 and

15 knots for all the simulation. The knots were set to based on the quantiles of the

observed response values. Tables 4.1 ∼ 4.3 present the characteristics of the estimates

of the regression coefficients β1 and β2 in terms of bias, the difference between the

average of 500 point estimators and the true value, SSD, the standard deviation of

the 500 point estimators, ASE, the average of the standard errors, and CP95, the

95% coverage probability for each parameter estimate across all simulation setups.

The results in Tables 4.1 ∼ 4.3 suggest that our methods perform very well with

very small bias, close values between SSD and ASE, and CP95 being close to the

nominal value 0.95 for each parameter estimate across all parameter configurations

in the simulation. It is observed that the estimation performance diminishes with

larger bias and larger variance estimate for each parameter estimation in general as

the censoring rate increases. This is expected as the information about the failure

time contained in the data decreases as the censoring rate increases.

In order to assess the estimation performance of our methods on the baseline

CDF, we consider local mean squared errors (MSEs) on a set of pre-specified grid

points. For any grade point t, the local MSE of the baseline CDF estimate F̂0(t) is

defined as

MSE(F̂0(t)) = 1
500

500∑
j=1

(F0(t)− F̂ (j)
0 (t))2,

where F̂ (j)
0 (t) is the estimator of F0(t) based on the j-th dataset. The mean MSE of

F̂0, defined as the average of these local MSEs over the set of grid points, provides a

global measure of MSE of F̂0 and can be used to evaluate how accurate the estimation

of F0 is. Table 4.4 present the results of MSEs for F̂0 as well as for β̂1 and β̂2. The

small values of mean MSEs of F̂0 indicate that the proposed methods can estimate

the baseline CDF accurately.
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For the comparison purposes, the Box-Cox transformation method was applied

to the the complete data, i.e., the simulation data with 0% right censoring rate.

Table 4.5 summarizes the estimation results of the regression parameter estimates

in terms of bias, SSD, ASE, and CP95, and Table 4.6 summarizes the results of

mean squared errors of β̂1, β̂2, and F̂0. The results in these two tables suggest that

the Box-Cox method works well when the true transformation α(t) = log(t) and

α(t) = (t0.1 − 1)/0.1, both falling with the Box-Cox transformation family, but fails

to work when the true transformation is α(t) = t3 + t, a transformation not within

the the Box-Cox transformation family. In contrast, the proposed method works well

for all these cases as seen in Tables 4.1∼4.4.

Table 4.1: Simulation results from the proposed methods based on 500 simulated
data sets with sample size 200 when the true transformation function is α(t) =
log(t). CR stands for censored rate. Bias is the difference between the average of
500 point estimators and the true value. SSD is the standard deviation of the 500
point estimators. ASE is the average of the standard errors of each point estimator.
CP95, the coverage probability, is calculated as the proportion of the 95% confidence
intervals that covers the true value of the coefficient.

α(t) = log(t) Results for β1 Results for β2
CR (β1, β2) Bias SSD ASE CP95 Bias SSD ASE CP95
0% (0, 0) 0.001 0.252 0.248 0.942 -0.002 0.146 0.143 0.946

(0, 1) 0.002 0.251 0.248 0.942 -0.015 0.155 0.152 0.946
(1, 0) -0.013 0.260 0.253 0.944 -0.003 0.145 0.143 0.954

(1,−1) -0.017 0.253 0.253 0.942 -0.016 0.155 0.152 0.942
20% (0, 0) -0.004 0.267 0.249 0.941 -0.012 0.145 0.144 0.946

(0, 1) 0.010 0.284 0.256 0.952 -0.017 0.163 0.170 0.938
(1, 0) 0.018 0.278 0.282 0.947 0.011 0.165 0.178 0.944

(1,−1) 0.011 0.280 0.272 0.934 -0.017 0.161 0.163 0.942
40% (0, 0) 0.012 0.317 0.289 0.959 -0.019 0.171 0.178 0.939

(0, 1) -0.025 0.295 0.297 0.941 0.023 0.181 0.178 0.941
(1, 0) -0.029 0.327 0.301 0.932 0.027 0.184 0.181 0.961

(1,−1) -0.029 0.323 0.291 0.942 -0.029 0.180 0.178 0.938
60% (0, 0) 0.028 0.361 0.341 0.928 0.029 0.207 0.209 0.959

(0, 1) 0.032 0.358 0.334 0.965 0.031 0.213 0.211 0.967
(1, 0) 0.035 0.371 0.341 0.967 -0.037 0.218 0.201 0.931

(1,−1) -0.031 0.362 0.334 0.926 -0.029 0.211 0.198 0.965
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Table 4.2: Simulation results from the proposed methods based on 500 simulated
data sets with sample size 200 when the true transformation function is α(t) =
(t0.1−1)/0.1. CR stands for censored rate. Bias is the difference between the average
of 500 point estimators and the true value. SSD is the standard deviation of the 500
point estimators. ASE is the average of the standard errors of each point estimator.
CP95, the coverage probability, is calculated as the proportion of the 95% confidence
intervals that covers the true value of the coefficient.

α(t) = (t0.1 − 1)/0.1 Results for β1 Results for β2
CR (β1, β2) Bias SSD ASE CP95 Bias SSD ASE CP95
0% (0, 0) 0.001 0.252 0.248 0.942 -0.002 0.146 0.143 0.946

(0, 1) 0.002 0.251 0.248 0.942 -0.016 0.155 0.152 0.948
(1, 0) -0.013 0.260 0.253 0.944 -0.003 0.146 0.143 0.952

(1,−1) -0.017 0.253 0.253 0.944 -0.016 0.155 0.152 0.942
20% (0, 0) -0.004 0.267 0.249 0.946 -0.012 0.145 0.145 0.946

(0, 1) 0.012 0.284 0.257 0.955 -0.017 0.163 0.172 0.936
(1, 0) 0.018 0.270 0.282 0.946 0.011 0.157 0.178 0.947

(1,−1) 0.011 0.280 0.275 0.934 -0.018 0.161 0.163 0.941
40% (0, 0) 0.012 0.318 0.287 0.959 -0.019 0.171 0.178 0.939

(0, 1) -0.028 0.297 0.297 0.944 0.023 0.183 0.178 0.941
(1, 0) 0.029 0.317 0.303 0.932 -0.027 0.185 0.181 0.961

(1,−1) -0.029 0.323 0.291 0.944 0.029 0.182 0.176 0.938
60% (0, 0) 0.028 0.361 0.341 0.928 0.029 0.207 0.209 0.959

(0, 1) 0.032 0.361 0.336 0.965 0.031 0.216 0.214 0.966
(1, 0) 0.035 0.371 0.338 0.966 -0.038 0.216 0.201 0.934

(1,−1) -0.031 0.362 0.334 0.928 -0.029 0.211 0.198 0.966
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Table 4.3: Simulation results from the proposed methods based on 500 simulated
data sets with sample size 200 when the true transformation function is α(t) =
t3 + t. CR stands for censored rate. Bias is the difference between the average of
500 point estimators and the true value. SSD is the standard deviation of the 500
point estimators. ASE is the average of the standard errors of each point estimator.
CP95, the coverage probability, is calculated as the proportion of the 95% confidence
intervals that covers the true value of the coefficient.

α(t) = t3 + t Results for β1 Results for β2
CR (β1, β2) Bias SSD ASE CP95 Bias SSD ASE CP95
0% (0, 0) 0.001 0.252 0.248 0.946 -0.002 0.146 0.143 0.944

(0, 1) 0.002 0.251 0.248 0.942 -0.016 0.155 0.152 0.948
(1, 0) -0.013 0.260 0.253 0.944 -0.003 0.145 0.143 0.950

(1,−1) -0.017 0.253 0.253 0.946 -0.016 0.155 0.152 0.944
20% (0, 0) 0.004 0.267 0.249 0.946 -0.012 0.145 0.144 0.946

(0, 1) 0.012 0.284 0.257 0.952 -0.017 0.163 0.170 0.936
(1, 0) 0.018 0.270 0.282 0.946 0.011 0.167 0.178 0.947

(1,−1) 0.011 0.280 0.275 0.934 -0.018 0.161 0.163 0.944
40% (0, 0) 0.012 0.318 0.289 0.959 -0.019 0.171 0.178 0.939

(0, 1) -0.028 0.295 0.297 0.941 -0.023 0.183 0.178 0.941
(1, 0) 0.029 0.317 0.303 0.932 -0.027 0.184 0.181 0.961

(1,−1) -0.029 0.323 0.291 0.944 -0.029 0.182 0.178 0.938
60% (0, 0) 0.028 0.361 0.341 0.928 0.029 0.207 0.209 0.959

(0, 1) -0.032 0.361 0.334 0.965 0.031 0.216 0.214 0.967
(1, 0) 0.035 0.371 0.342 0.966 -0.038 0.218 0.201 0.934

(1,−1) -0.031 0.362 0.334 0.926 -0.029 0.211 0.198 0.966
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Table 4.4: Mean Squared Errors of β̂1, β̂2, F̂0 for our proposed methods with α(t) =
log(t) and α(t) = t3 + t. Here MSE(F̂0) is the average of the local mean squared
errors of F̂ (t) over the a set of grid points.

α(t) = log(t) α(t) = t3 + t

CR (β1, β2) MSE(β̂1) MSE(β̂2) MSE(F̂0) MSE(β1) MSE(β2) MSE(F̂0)
0% (0, 0) 0.0147 0.0457 0.0009 0.0194 0.0638 0.0010

(0, 1) 0.0183 0.0632 0.0011 0.0327 0.0917 0.0009
(1, 0) 0.0247 0.0672 0.0009 0.0284 0.0842 0.0012

(1,−1) 0.0267 0.0798 0.0009 0.0281 0.0831 0.0009
20% (0, 0) 0.0274 0.0683 0.0009 0.0318 0.0901 0.0011

(0, 1) 0.0389 0.0801 0.0009 0.0356 0.0867 0.0009
(1, 0) 0.0295 0.0783 0.0011 0.0295 0.0912 0.0009

(1,−1) 0.0232 0.0925 0.0010 0.0328 0.0794 0.0010
40% (0, 0) 0.0386 0.1045 0.0012 0.0401 0.0873 0.0011

(0, 1) 0.0396 0.0948 0.0009 0.0381 0.0920 0.0010
(1, 0) 0.0289 0.0892 0.0011 0.0314 0.1104 0.0009

(1,−1) 0.0324 0.1148 0.0009 0.0334 0.1008 0.0009
60% (0, 0) 0.0294 0.1138 0.0012 0.0392 0.1193 0.0011

(0, 1) 0.0327 0.0917 0.0013 0.0411 0.1301 0.0013
(1, 0) 0.0384 0.1242 0.0012 0.0312 0.0109 0.0012

(1,−1) 0.0436 0.1288 0.0011 0.0438 0.1246 0.0011
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Table 4.5: Simulation results from the Box-Cox transformation method based on
500 simulated data sets with sample size 200 for three true transformation function α
with no censoring. Bias is the difference between the average of 500 point estimators
and the true value. SSD is the standard deviation of the 500 point estimators. ASE
is the average of the standard errors of each point estimator. CP95, the coverage
probability, is calculated as the proportion of the 95% confidence intervals that covers
the true value of the coefficient.

Results for β1 Results for β2
α(t) (β1, β2) Bias SSD ASE CP95 Bias SSD ASE CP95
log(t) (0, 0) -0.005 0.271 0.244 0.962 -0.002 0.160 0.143 0.946

(0, 1) -0.004 0.271 0.244 0.961 0.001 0.166 0.142 0.902
(1, 0) -0.005 0.275 0.244 0.964 0.002 0.160 0.143 0.944

(1,−1) -0.004 0.271 0.244 0.962 0.000 0.160 0.142 0.942
t0.1−1

0.1 (0, 0) 0.004 0.267 0.249 0.946 -0.012 0.145 0.145 0.946
(0, 1) -0.004 0.271 0.244 0.955 0.001 0.166 0.142 0.906
(1, 0) -0.005 0.274 0.244 0.966 0.001 0.163 0.142 0.947

(1,−1) -0.004 0.271 0.244 0.964 0.000 0.160 0.163 0.941
t3 + t (0, 0) -0.001 0.008 0.008 0.940 -0.000 0.005 0.004 0.960

(0, 1) -0.001 0.008 0.008 0.944 -0.967 0.007 0.005 0
(1, 0) -0.968 0.007 0.008 0 0.000 0.005 0.005 0.941

(1,−1) -0.968 0.011 0.008 0 0.969 0.008 0.004 0

Table 4.6: Mean Squared Errors of β̂1, β̂2, F̂0 for Box-Cox transformation method
with 3 different α(t) with no censoring.

α(t) True (β1, β2) MSE(β̂1) MSE(β̂2) MSE(F̂0)
log(t) (0, 0) 0.0722 0.0250 0.0000

(0, 1) 0.0722 0.0271 0.0000
(1, 0) 0.0743 0.0251 0.0000

(1,−1) 0.0721 0.0251 0.0000
t0.1−1

0.1 (0, 0) 0.0722 0.0251 0.0001
(0, 1) 0.0722 0.0271 0.0001
(1, 0) 0.0738 0.0251 0.0001

(1,−1) 0.0721 0.0251 0.0001
t3 + t (0, 0) 0.0000 0.0000 0.1151

(0, 1) 0.0000 0.9348 0.1464
(1, 0) 0.9371 0.0000 0.1430

(1,−1) 0.9384 0.9393 0.1254
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4.7 Real-data applications

4.7.1 Boston housing data analysis

The Boston housing dataset by Harrison Jr and Rubinfeld, 1978 has been widely

used to as a benchmark to compare different machine learning methods and regression

models. The data were collected in 1978 by the U.S Census Service, and each of the

506 entries represented the aggregated data about 14 features for homes from various

suburbs in Boston, Massachusetts. The response variable is the median value of

owner-occupied homes in thousands of dollars. This is a complete dataset to illustrate

our proposed method.

We apply the proposed method to this data set by taking degree 2 and using

different numbers of interior knots based on the quantiles for the monotone splines.

Akaike information criterion (AIC) by Akaike, 1998 is used for model selection. Table

4.7 reports the calculated AIC from the proposed method when using different number

of knots. As seen in Table 4.7, the model with 15 interior knots produces the smallest

AIC value and is chosen as our final model.

For comparison, we also fit a linear regression model for the Box-Cox transformed

response. It is worth noting that the probit model has a standard normal random error

and the linear model based on Box-Cox transformation assumes a normal random

error with an unknown variance. To make the estimated coefficient comparable for

the two methods, we scaled the coefficient estimators from Box-Cox transformation

by 1/σ̂. Table 4.8 shows the estimation results of the covariate effects from the two

competing methods. Our propose method has no intercept since it is absorbed in

the transformation part. As seen in Table 4.8, the two models produce very similar

estimation results for all these covariate effects, in terms of the point estimates and

their 95% confidence intervals.
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To further examine the model fit, we investigated the residuals from the two com-

peting methods. The residuls from the proposed probit model were calculated as in

equation 4.6 of Section 5.1, and the residuals of the Box-Cox transformation model

were the scaled residuals, the usual residuals from the usual linear regression model

multiplied by the estimated standard deviation σ̂ of the random errors, in order to

provide a fair comparison. From Figure 2, the residual plot from the proposed pro-

bit model show a good of fit with essentially no particular pattern and with equal

variance across the predicted values, while the residual plot from the Box-Cox trans-

formation model shows a lack of fit with a decreasing variance across the predicted

values. Figure 3 shows the Quantile-Quantile (Q-Q) plot for each set of residuals

from the two methods. As seen from Figure 3, the Q-Q plot based on the Box-Cox

transformation shows a serious violation of the normality assumption, while the Q-Q

plot from the probit model does not suggest so. To provide more formal normality

test results, Shapiro-Wilk tests of normality were conducted on the two sets of resid-

uals using R function ”shapiro.test". These tests report p-values of 0.2283 and 0 for

the probit model and the Box-Cox transformation model, respectively. These results

again suggest that the residuals from the probit model pass the normality test while

the residuals from the Box-Cox tranformation model do not. Altogether these results

of residual analysis suggest that the probit model provides a good fit for this data set

while the regression model based on the Box-Cox tranformation has a lack of fit.

Table 4.7: The calculated Kaike Information Criterion (AIC) values from the probit
models with different numbers of interior knots for the Boston Housing data analysis.

# 10 12 14 15 16 18 20
AIC 1833.085 1830.918 1824.239 1813.388 1816.318 1820.449 1822.982
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Table 4.8: Coefficient estimates from the probit model and Box-Cox transformation
model.

Proposed model Box-Cox transformation
β̂ Lower Upper β̂ Lower Upper

(Intercept) - - - 19.263 17.151 21.375
xcrim -0.043 -0.048 -0.037 -0.051 -0.066 -0.039
xzn 0.006 -0.020 0.032 0.008 0.000 0.012

xindus 0.013 -0.346 0.371 0.012 -0.012 0.039
xchas 0.582 -1.028 2.192 0.541 0.187 0.898
xnox -4.494 -4.679 -4.309 -4.130 -5.713 -2.547
xrm 0.503 0.498 0.509 0.525 0.350 0.696
xage -0.004 -0.089 0.082 0.000 -0.004 0.008
xdis -0.289 -0.317 -0.261 -0.268 -0.350 -0.187
xrad 0.080 0.079 0.082 0.074 0.047 0.101
xtax -0.004 -0.060 0.053 -0.004 -0.004 0.000

xptratio -0.222 -0.224 -0.221 -0.206 -0.261 -0.152
xblack 0.003 -0.021 0.026 0.004 0.000 0.004
xlstat -0.159 -0.173 -0.144 -0.152 -0.171 -0.128
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Figure 4.2: Quantile-Quantile plots of the residuals from the proposed probit model
(left) and the Box-Cox transformation model (right) for Boston Housing data analysis.
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Figure 4.1: Residual plots from the proposed probit model (left) and the Box-Cox
transformation model (right) for Boston Housing data analysis.

4.7.2 Prostate cancer data analysis

The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial is

a large randomized trial designed and sponsored by the National Cancer Institute

(NCI) to determine the effects of screening on cancer diagnosis and to reduce the

cancer mortality. The study was initiated in 1993 and recruited participants who

aged between 55 and older, had no previous history of any PLCO cancer, and were

not participating in any other cancer screening and/or primary prevention trials.

Details about the PLCO study can be found in Andriole et al. (2012).

The data considered here were withdrawn from the prostate cancer intervention

arm, which contained 34,175 male participants. As an eligibility requirement, all

patients had no history of any PLCO cancer. The response variable of interest was

taken to be the age of prostate cancer diagnosis since the aim of this analysis was to
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study the effects of some potential risk factors on the age of diagnosis. The diagnosis

times were exactly observed for those participants who had prostate cancer during

the study and were right-censored for the participants who did not contract prostate

cancer by their last examination times. Ten binary covariates on participants’ health

status at the enrollment were considered in our analysis: education, with 1 for having

at least college education; obese, with 1 for having a body mass index at least 30;

heartd, with 1 for having history of any heart diseases; stroke, with 1 for having a

stroke in the past; diabetes, with 1 for having diabetes; hepatitis, with 1 for having

hepatitis; family history; with 1 for having at least one close relative who had prostate

cancer before; psa history, with 1 suggesting having prostate-specific antigen testing

in the past. In addition, race was also included in our analysis with four categories:

Asian, African American, Caucasian, and other. Three dummy variables was created

with Caucasian being the baseline category in our data analysis. After deleting the

observations with missing values in the covariates, the final data set contained 20,553

observations in total, with a 90.6% right-censoring rate.

We applied our proposed method to this data set taking 2 for the degree of mono-

tone splines but different number of knots based on the quantiles of the observed

response values. Table 9 shows the AIC values from our methods using different

number of knots. It turns out that the model with 18 interior knots had the smallest

AIC value and then was selected as the final model.

For comparison, we also implemented the partial likelihood method from Cox

model (Cox, 1972), the most popular semiparametric regression model in survival

analysis. In general, a positive coefficient in the conventional Cox model implies a

positive covariate effect on the hazard and thus leads to a shortened survival time.

However, a positive regression coefficient in probit model (1) implies a prolonged

survival time for the corresponding covariate. In order to provide easy comparison,

we intentionally used −x to replace x when fitting the Cox model so that the covariate
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effects on the survival times have the same direction for the two models. Table

4.10 presents the he estimated covariate effects and their 95% confident intervals

from these two models. Although the coefficients from the two models have different

interpretations and are directly comparable, all of the estimated coefficients have the

same signs and their 95% confidence intervals show the same status of whether they

contain 0, indicating that the two methods identifies the same set of risk factors.

To conduct model diagnosis, we calculated the residuals ri’s as described in Sec-

tion 5. Notice that a Q-Q plot is not appropriate as the residuals are also subject to

right-censoring. Figure 4.6 plots the estimated Kaplan-Meier curve and its its 95%

confidence band based on the residuals ri’s and the censoring indicators δi’s as well

as the true survival function 1 − Φ(·) under the probit model assumption. As seen

clearly in Figure 4.6, the true survival curve is very close to the estimated Kaplan-

Meier curve, which suggests the validity of the probit model for this analysis. We

also implemented a formal one-sample log-rank test using the R function ”LogRank1"

implemented by Professor Mai Zhou at University of Kentucky. The log-rank test

produced a p-value 0.9379, also indicating no significant difference between the esti-

mated Kaplan-Meier curve of the residual and the true survival function of a standard

normal distribution. All these results suggest that the probit model is valid for this

analysis.

Table 4.9: The calculated Kaike Information Criterion (AIC) values from the probit
models with different numbers of interior knots for the prostate cancer data analysis.

# 10 12 15 17 18 19 20
AIC 16799 16798 16796 16791 16789 16790 16792
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Table 4.10: Estimated covariate effects from the probit model and Cox model.

Proposed model Cox model
Covariate β̂ Lower Upper β̂ Lower Upper

educ -0.094 -0.146 -0.042 -0.151 -0.242 -0.060
obese -0.069 -0.130 -0.008 -0.099 -0.208 0.011
heartd 0.226 0.151 0.300 0.389 0.254 0.524
stroke 0.223 0.062 0.383 0.341 0.050 0.632
smoker -0.123 -0.192 -0.053 -0.223 -0.346 -0.100

diabetes 0.252 0.157 0.348 0.427 0.253 0.602
hepatitis 0.122 -0.021 0.262 0.211 -0.047 0.468
fam_hist -0.332 -0.417 -0.247 -0.532 -0.671 -0.394
psa_hist 0.048 -0.004 0.103 0.077 -0.017 0.172

raceb -0.321 -0.428 -0.215 -0.557 -0.733 -0.381
racea 0.456 0.284 0.628 0.700 0.378 1.022
raceo 0.030 -0.143 0.203 0.089 -0.246 0.425
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Figure 4.3: The true survival curve (red solid), the estimated Kaplan-Meier curve,
and its 95% pointwise confidence band based on the residuals of the proposed probit
model for the analysis of prostate cancer data.

61



www.manaraa.com

4.8 Concluding remarks

This chapter proposes a flexible semi-parametric transformation model for the

regression analysis for both complete and right-censored data. The proposed model

is simple as the random error has a simple standard normal distribution. Our model

is more flexible than the regression analysis based on Box-Cox transformed response

since the transformation function is unknown. This model was studied in survival

literature for analyzing interval-censored data (Lin and Wang, 2011), but little if any

research has been reported for analyzing complete and right-censored data directly

to the best of our knowledge.

A maximum likelihood approach based on ECM algorithms is developed to esti-

mate the unknown transformation function and the regression parameters simulta-

neously for both complete and right-censored data. The proposed ECM algorithms

are very easy to implement as they provides explicit expressions for all parameters

in each iteration of the algorithms. The ECM algorithms are found to be robust

to initial values, easy to implement, and fast to converge. Furthermore, the vari-

ance estimate is also obtained in closed form. The simulation results show that the

proposed approach has excellent performance in estimating both the regression pa-

rameters and the baseline CDF (also the transformation function) in both complete

and right-censored data. It also outperforms the regression analysis using the Box-

Cox transformed response as seen in our and real-life application when the response

variable is complete. Model diagnosis methods have been proposed to test the validity

of the probit model and are illustrated in the real data applications. The proposed

method can be further extended to more complicated survival data, such as partially

interval-censored data, which contain a mixture of exactly observed observations and

interval-censored observations.
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Appendix A

Quantities involved in the variance estimate of

θ̂

The first part in Louis’ method involves finding the second derivatives of Q(θ, θ(d))

with respect to θ. The detailed formula of these quantities are

∂2Q(θ, θ(d))
∂β∂β′

=
N∑
i=1
−XiX

T
i ,

∂2Q(θ, θ(d))
∂γ2

0
= −N,

∂2Q(θ, θ(d))
∂γ2

k

= −
N∑
i=1
{b2
k(yi) + γ−2

k h
(d)
ik δi},

∂2Q(θ, θ(d))
∂β∂γ0

=
N∑
i=1

XT
i ,

∂2Q(θ, θ(d))
∂β∂γk

=
N∑
i=1

bk(yi)XT
i ,

∂2Q(θ, θ(d))
∂γ0∂γk

= −
N∑
i=1

bk(yi),

∂2Q(θ, θ(d))
∂γl∂γk

= −
N∑
i=1

bl(yi)bk(yi), k 6= l.
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The quantities involved in var(∂ logLc/∂θ|D, θ) are

var(∂ logLc
∂β

|D, θ) =
N∑
i=1

XiX
T
i var(Zi|D, θ),

var(∂ logLc
∂γ0

|D, θ) =
N∑
i=1

var(Zi|D, θ),

var(∂ logLc
∂γk

|D, θ) =
N∑
i=1

b2
k(yi)var(Zi|D, θ) + γ−2

k var(uik|D, θ)δi,

cov(∂ logLc
∂β

,
∂ logLc
∂γ0

|D, θ) =
N∑
i=1

XT
i var(Zi|D, θ),

cov(∂ logLc
∂γk

,
∂ logLc
∂γ0

|D, θ) =
N∑
i=1

bk(yi)var(Zi|D, θ),

cov(∂ logLc
∂β

,
∂ logLc
∂γk

|D, θ) = −
N∑
i=1

bk(yi)XT
i var(Zi|D, θ),

cov(∂ logLc
∂γk

,
∂ logLc
∂γl

|D, θ) =
N∑
i=1

bk(yi)bl(yi)var(Zi|D, θ) + γkγl
−1cov(uik, uil|D, θ)δi,

where

var(uik|D, θ) = γkmk(yi)∑K
q=1 γqmq(yi)

{1− γkmk(yi)∑K
q=1 γqmq(yi)

}δi,

cov(uik, uil|D, θ) = γkγlml(yi)mk(yi)
{∑K

q=1 γqmq(yi)}2 δi, k 6= l

var(Zi|D, θ) =
{

1 + uiφ(ui)
Φ(ui)

− φ(ui)2

Φ(ui)2

}
(1− δi),

and ui = γ0 +∑K
k=1 γkbk(yi)−XT

i β for i = 1, · · · , N .
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